如何建设高可用系统
面试的时候经常会问一个问题,如何建设高可用系统?大家可以一起探讨下。
“高可用性”(High Availability)通常来描述一个系统经过专门的设计,从而减少停工时间,而保持其服务的高度可用性。以下是高可用系统的设计建议:
设计建议
- 减少单点 – 去单点首先要识别整个系统所有主链路的单点,如机房(同城异地双机房),应用服务器,DNS服务器,SFTP服务器,LBS,缓存服务器,数据库,消息服务器,代理服务器和专线等,如系统通过专线调用对方服务,需要考虑同时拉联通和电信的专线,联通或电信的专线还是有一定概率会出现问题的,但是同时出问题的概率会小非常多。优先使用软负载,使用硬负载兜底。
- 减少依赖 – 减少DNS依赖,减少远程服务依赖,DNS依赖可以尝试设置本地host,用工具给所有服务器推送最新的域名映射关系,通过本地缓存或近端服务减少RPC调用。
- 限制循环 – 避免无限死循环,导致CPU利用率百分百,可以设置for循环的最大循环次数,如最大循环1000次。
- 增加限流:对外服务增加限流,注意限流的值最好是压测过的,如果没有压测过,只能设置成平时的峰值流量,否则可能增加一点流量,就不能提供服务了。
- 控制流量 – 避免异常流量对应用服务器产生影响,可以对指定服务设置流量限制,如QPS,TPS,QPH(每小时总请求量)和QPD(每天总请求量)。
- 精准监控 – 对CPU利用率,load,内存,带宽,系统调用量,应用错误量,PV,UV和业务量进行监控,避免内存泄露和异常代码对系统产生影响,配置监控一定要精准,如平时内存利用率是50%,监控可以配置成60%进行报警,这样可以提前感知内存泄露问题,避免应用无响应。
- 无状态 – 服务器不能保存用户状态数据,如在集群环境下不能用static变量保存用户数据,不能长时间把用户文件存放在服务器本地。服务器有状态会难以扩容,且出现单点问题。
- 容量规划 – 定期对容量进行评估。如大促前进行压测和容量预估,根据需要进行扩容。
- 功能开关 – 打开和关闭某些功能,比如消息量过大,系统处理不了,把开关打开后直接丢弃消息不处理。上线新功能增加开关,如果有问题关闭新功能。
- 设置超时 – 设置连接超时和读超时设置,不应该太大,如果是内部调用连接超时可以设置成1秒,读超时3秒,外部系统调用连接超时可以设置成3秒,读超时设置成20秒。
- 重试策略 – 当调用外部服务异常时可以设置重试策略,每次重试时间递增,但是需要设置最大重试次数和重试开关,避免对下游系统产生影响。
- 隔离 – 应用隔离,模块隔离,机房隔离和线程池隔离。可以按照优先级,不变和变几个维度来隔离应用和模块,如抽象和不变的代码放在一个模块,这个模块的代码几乎不会修改,可用性高,经常变的业务逻辑放在一个模块里,这样就算有问题,也只会影响到某一个业务。不同的业务使用不同的线程池,避免低优先级任务阻塞高优先级,或高优先级任务过多时影响低优先级任务永远不会执行。
- 异步调用 – 同步调用改成异步调用,解决远程调用故障或调用超时对系统的影响。
- 热点缓存 – 对热点数据进行缓存,降低RPC调用。如B系统提供名单服务,B系统可以提供一个client SDK提供近端缓存服务,定期去服务器端取数据,减少RPC调用。
- 缓存容灾 – 当数据库不可用时可以使用缓存的数据。并设置分级缓存,如优先读本地缓存,其次读分布式缓存。
- 分级缓存 – 优先读本地缓存,其次读分布式缓存。通过推模式更新本地缓存。
- 系统分级 – 对系统进行分级,如ABC三个等级,高级别系统不依赖于低级别系统,并且高级别系统比底级别系统高可用率要高。
- 服务降级 – 如果系统出现响应缓慢等状况,可以关闭部分功能,从而释放系统资源,保证核心服务的正常运行。需要识别哪些服务可以降级,比如突然有大量消息流入,导致服务不可用,我们会把消息直接丢弃掉。或通过设置流控,拒绝为低级别系统提供服务。
- 流量蓄洪 – 当流量陡增时,可以将请求进行蓄洪,如把请求保存在数据库中,再按照指定的QPS进行泄洪,有效的保护下游系统,也保证了服务的可用性。当调用对方系统,对方系统响应缓慢或无响应时,可采取自动蓄洪。
- 服务权重 – 在集群环境中,可自动识别高性能服务,拒绝调用性能低的服务。如在集群环境中,对调用超时的服务器进行权重降低,优先调用权重高的服务器。
- 依赖简化– 减少系统之间的依赖,比如使用消息驱动,A和B系统通过消息服务器传递数据,A和B系统使用数据库进行读写分离,A系统负责往数据库中写数据,B系统负责读数据,因为数据存放在数据库中,当A不可用时,短时间内不影响B系统提供服务。
- 弹性扩容 – 根据资源的使用率自动或手动进行扩容。如带宽不够用时,快速增加带宽。
- 灰度和回滚 – 发布新功能只让部分服务器生效,且观察几天逐渐切流,如果出现问题只影响部分客户。出现问题快速回滚,或者直接下线灰度的机器。
- 减少远程调用 – 优先调用本地JVM内服务,其次是同机房服务,然后是同城服务,最后是跨城服务。如A调用B,B调用互联网的C系统获取数据,B系统可以把数据缓存起来,并设置数据的保鲜度,减少B对C的依赖。配置中心把注册服务的地址推送到调用服务的系统本地。参数中心把参数配置信息推送到系统的本地内存,而不是让系统去远程服务器获取参数信息。
- 熔断机制 – 增加熔断机制,当监控出线上数据出现大幅跌涨时,及时中断,避免对业务产生更大影响。如我们做指标计算时,指标可以计算慢,但是不能算错,如果发现某个用户的指标环比或同比增长一倍或跌零,会考虑保存所有消息,并中止该用户的指标计算。
- 运行时加载模块 – 我们会把经常变的业务代码变成一个个业务模块,使用Java的ClassLoader在运行时动态加载和卸载模块,当某个模块有问题时候,可以快速修复。
- 代码扫描 – 使用IDEA代码分析等工具进行代码扫描,识别出程序中的BUG,如空指针异常,循环依赖等。
- 自动备份 – 程序,系统配置和数据定期进行备份。可使用linux命令和shell脚本定时执行备份策略,自动进行本地或异地。出现问题时能快速重新部署。
- 线上压测 – 系统的对外服务需要进行压测,知道该服务能承受的QPS和TPS,从而做出相对准确的限流。
参考资料
- 分布式系统稳定性模式
原创文章,转载请注明: 转载自并发编程网 – ifeve.com本文链接地址: 如何建设高可用系统
不错 很全面
真厉害 很多场景的解决方案想都想不到