怎么理解Condition
版权声明:本文为本作者原创文章,转载请注明出处。感谢码梦为生| 刘锟洋 的投稿。
在java.util.concurrent包中,有两个很特殊的工具类,Condition和ReentrantLock,使用过的人都知道,ReentrantLock(重入锁)是jdk的concurrent包提供的一种独占锁的实现。它继承自Dong Lea的 AbstractQueuedSynchronizer(同步器),确切的说是ReentrantLock的一个内部类继承了AbstractQueuedSynchronizer,ReentrantLock只不过是代理了该类的一些方法,可能有人会问为什么要使用内部类在包装一层? 我想是安全的关系,因为AbstractQueuedSynchronizer中有很多方法,还实现了共享锁,Condition(稍候再细说)等功能,如果直接使ReentrantLock继承它,则很容易出现AbstractQueuedSynchronizer中的API被误用的情况。
阅读全文
Java 7中的TransferQueue
原文链接,译文链接,作者:Alex Miller,译者:Greenster,校对:梁海舰
Java7中加入了JSR 166y规范对集合类和并发类库的改进。其中的一项是增加了接口TransferQueue
和其实现类LinkedTransferQueue
。
TransferQueue继承了BlockingQueue(
BlockingQueue又
继承了Queue
)并扩展了一些新方法。BlockingQueue(和Queue)是Java 5中加入的接口,它是指这样的一个队列:当生产者向队列添加元素但队列已满时,生产者会被阻塞;当消费者从队列移除元素但队列为空时,消费者会被阻塞。
阅读全文
JUC LinkedBlockingQueue
本文首先发表在 码蜂笔记
java.util.concurrent.LinkedBlockingQueue
是一个基于单向链表的、范围任意的(其实是有界的)、FIFO 阻塞队列。访问与移除操作是在队头进行,添加操作是在队尾进行,并分别使用不同的锁进行保护,只有在可能涉及多个节点的操作才同时对两个锁进行加锁。
队列是否为空、是否已满仍然是通过元素数量的计数器(count)进行判断的,由于可以同时在队头、队尾并发地进行访问、添加操作,所以这个计数器必须是线程安全的,这里使用了一个原子类 AtomicInteger
,这就决定了它的容量范围是: 1 – Integer.MAX_VALUE。
由于同时使用了两把锁,在需要同时使用两把锁时,加锁顺序与释放顺序是非常重要的:必须以固定的顺序进行加锁,再以与加锁顺序的相反的顺序释放锁。 阅读全文
JUC 可重入 读写锁 ReentrantReadWriteLock
本文首先发表在 码蜂笔记
读写锁 ReadWriteLock
读写锁维护了一对相关的锁,一个用于只读操作,一个用于写入操作。只要没有writer,读取锁可以由多个reader线程同时保持。写入锁是独占的。
互斥锁一次只允许一个线程访问共享数据,哪怕进行的是只读操作;读写锁允许对共享数据进行更高级别的并发访问:对于写操作,一次只有一个线程(write线程)可以修改共享数据,对于读操作,允许任意数量的线程同时进行读取。
与互斥锁相比,使用读写锁能否提升性能则取决于读写操作期间读取数据相对于修改数据的频率,以及数据的争用——即在同一时间试图对该数据执行读取或写入操作的线程数。
读写锁适用于读多写少的情况。 阅读全文
可扩展的快速读写锁
原文链接(需翻墙) ,译文链接, 译者:中麦-张军 ,校对:梁海舰
介绍
读写锁是一种允许多个线程并发地访问一个或一组资源的并发结构,这意味着在实践中如果你有一个或一组几乎是以只读方式访问时,可以考虑使用读写锁(后文统称为RWLocks)来保护它们;
Java在java.util.concurrent.locks.ReentrantReadWriteLock中提供了一个很好的RWLocks,是由Doug Lea创建,它有很多特性如:重入,公平锁,锁降级等;
线程基础之“其他一些例子”
原文链接 , 译文链接, 译者: dabaosod011 ,校对:梁海舰
其他一些例子
我们对数据竞争的定义相当严格:必须以确切方式去执行原始、未经转换的程序中并行的冲突操作。引入有害的数据竞争将给编译器带来无法“打断”程序的负担。
Initialization On Demand Holder idiom的实现探讨
起源
在程晓明同学的文章“双重检查锁定与延迟初始化”中,提到了对于单例模式的“Initialization On Demand Holder idiom”实现方案。
这个方案的技术实质是利用Java类初始化的LC锁。相比其他实现方案(如double-checked locking等),该技术方案的实现代码较为简洁,并且在所有版本的编译器中都是可行的。该方案代码如下:
阅读全文
[Google Guava] 2.4-集合扩展工具类
简介
有时候你需要实现自己的集合扩展。也许你想要在元素被添加到列表时增加特定的行为,或者你想实现一个Iterable,其底层实际上是遍历数据库查询的结果集。Guava为你,也为我们自己提供了若干工具方法,以便让类似的工作变得更简单。(毕竟,我们自己也要用这些工具扩展集合框架。)
Forwarding装饰器
针对所有类型的集合接口,Guava都提供了Forwarding抽象类以简化装饰者模式的使用。
Forwarding抽象类定义了一个抽象方法:delegate(),你可以覆盖这个方法来返回被装饰对象。所有其他方法都会直接委托给delegate()。例如说:ForwardingList.get(int)实际上执行了delegate().get(int)。
通过创建ForwardingXXX的子类并实现delegate()方法,可以选择性地覆盖子类的方法来增加装饰功能,而不需要自己委托每个方法——译者注:因为所有方法都默认委托给delegate()返回的对象,你可以只覆盖需要装饰的方法。
阅读全文
[Google Guava] 3-缓存
范例
[code lang=”java”]
LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder()
.maximumSize(1000)
.expireAfterWrite(10, TimeUnit.MINUTES)
.removalListener(MY_LISTENER)
.build(
new CacheLoader<Key, Graph>() {
public Graph load(Key key) throws AnyException {
return createExpensiveGraph(key);
}
});
[/code]