最简单例子图解JVM内存分配和回收
原文链接:最简单例子图解JVM内存分配和回收
一、简介
JVM采用分代垃圾回收。在JVM的内存空间中把堆空间分为年老代和年轻代。将大量(据说是90%以上)创建了没多久就会消亡的对象存储在年轻代,而年老代中存放生命周期长久的实例对象。年轻代中又被分为Eden区(圣经中的伊甸园)、和两个Survivor区。新的对象分配是首先放在Eden区,Survivor区作为Eden区和Old区的缓冲,在Survivor区的对象经历若干次收集仍然存活的,就会被转移到年老区。
原文链接:最简单例子图解JVM内存分配和回收
JVM采用分代垃圾回收。在JVM的内存空间中把堆空间分为年老代和年轻代。将大量(据说是90%以上)创建了没多久就会消亡的对象存储在年轻代,而年老代中存放生命周期长久的实例对象。年轻代中又被分为Eden区(圣经中的伊甸园)、和两个Survivor区。新的对象分配是首先放在Eden区,Survivor区作为Eden区和Old区的缓冲,在Survivor区的对象经历若干次收集仍然存活的,就会被转移到年老区。
颠覆大数据分析之RDD的表达性
译者:黄经业 购书
正如前面在比较Spark及DSM系统时所提到的,由于RDD只支持粗粒度的操作,因此它有一定的局限性。但是RDD的表达性对于大多数程序而言其实
已经足够好了。AMPLabs团队他们仅花了数百行代码就开发出了整个Pregel,这是Spark上的一个小的库。可以通过RDD及相关的操作来表示的集群计算模型列举如下:
原文地址 作者:Jakob Jenkov 译者:张坤
阿姆达尔定律可以用来计算处理器平行运算之后效率提升的能力。阿姆达尔定律因Gene Amdal 在1967年提出这个定律而得名。绝大多数使用并行或并发系统的开发者有一种并发或并行可能会带来提速的感觉,甚至不知道阿姆达尔定律。不管怎样,了解阿姆达尔定律还是有用的。
颠覆大数据分析之Spark VS分布式共享内存系统
译者:黄经业 购书
Spark可以看作是一个分布式共享集合系统,和Stumm和Zhou (1990)以及Nitzber和Lo (1991)所提到的传统的分布式共享内存(DSM)系统则略有不
同。DSM系统允许单独读写内存,而Spark只允许进行粗粒度的RDD转换。尽管这限制了能够使用Spark的应用种类,但它对于实现高效的容错性却很有帮助。DSM系统可能会需要检查点相互协作来完成容错,比如说使用Boukerche等人(2005)所提出的协议。相反的,Spark只需要存储世系图来进行容错。恢复需要在RDD丢失的分区上进行重构操作——但这个可以并行地高效完成。Spark与DSM系统的另一个根本的不同在于,由于RDD的只读特性,Spark中可以使用流浪者缓解策略——这使得备份任务可以并行地完成,这类似于MR中的推测执行(Dinu和Ng 2012)。而在DSM中则很难缓解流浪者或者备份任务,因为这两者都可能会产生内存竞争。Spark的另一个优点是当RDD的大小超出集群的所有内存时可以优雅地进行降级。它的缺点就是RDD的转换本质上是粗粒度的,这限制了能够开发的应用的种类。比如说,需要细粒度共享状态访问的应用,像WEB爬虫或者其它WEB应用,都很难在Spark上实现。Piccolo (Power和 Li 2010)提供了一个以数据为中心的异步编程模型,这或许是这类应用的一个更好的选择。
颠覆大数据分析之Spark弹性数据集
译者:黄经业 购书
Spark中迭代式机器学习算法的数据流可以通过图2.3来进行理解。将它和图2.1中Hadoop MR的迭代式机器学习的数据流比较一下。你会发现在Hadoop
MR中每次迭代都会涉及HDFS的读写,而在Spark中则要简单得多。它仅需从HDFS到Spark中的分布式共享对象空间的一次读入——从HDFS文件中创建RDD。RDD可以重用,在机器学习的各个迭代中它都会驻留在内存里,这样能显著地提升性能。当检查结束条件发现迭代结束的时候,会将RDD持久化,把数据写回到HDFS中。后续章节会对Spark的内部结构进行详细介绍——包括它的设计,RDD,以及世系等等。
原文地址 作者:Jakob Jenkov 译者:张坤
在并发上下文中,非阻塞算法是一种允许线程在阻塞其他线程的情况下访问共享状态的算法。在绝大多数项目中,在算法中如果一个线程的挂起没有导致其它的线程挂起,我们就说这个算法是非阻塞的。
为了更好的理解阻塞算法和非阻塞算法之间的区别,我会先讲解阻塞算法然后再讲解非阻塞算法。
最近在学习Netty框架,对着教程上写了个简单的netty应用,可是死活调试不成功,对着程序跟教程上看了几遍也找不到原因,后来又重新写了一遍,服务端程序终于调试成功,原因出在了那个@Skip注释上了,代码如下:
阅读全文
原文地址:作者: Jakob Jenkov 译者:张坤
CAS(Compare and swap)比较和替换是设计并发算法时用到的一种技术。简单来说,比较和替换是使用一个期望值和一个变量的当前值进行比较,如果当前变量的值与我们期望的值相等,就使用一个新值替换当前变量的值。这听起来可能有一点复杂但是实际上你理解之后发现很简单,接下来,让我们跟深入的了解一下这项技术。
作者:佐井 原文地址
最近上线一个需求,完成需求的过程对代码进行了一次重构。应用发布后半个小时左右,发现一个机器报警,load过高。登陆机器看CPU使用情况,发现load已经正常,看下CPU使用情况,发现有一个核跑满,其他CPU使用率很低。大概一个小时后,其他机器陆续报警,发现同样的问题,紧急回滚应用。
应用运行在16G内存的虚机上,整个JVM11G内存,其中新生代3G,CMS gc,JDK7。
第一反应是JVM可能在进行full gc,因为只有一个线程跑满,其他线程被JVM暂停了。先去应用日志看下应用运行情况,果然日志已经没有任何输出。jstat -gcutil查看JVM内存使用情况,发现Old区使用已经100%。
感谢网友【张超盟】的投稿
AQS(AbstractQueuedSynchronizer)是 java.util.concurrent的基础。J.U.C中宣传的封装良好的同步工具类Semaphore、CountDownLatch、ReentrantLock、ReentrantReadWriteLock、FutureTask等虽然各自都有不同特征,但是简单看一下源码,每个类内部都包含一个如下的内部类定义:
[code lang=”java”] abstract static class Sync extends AbstractQueuedSynchronizer [/code]

正如即将上映的星球大战那样,Java 8的并行流也是毁誉参半。并行流(Parallel Stream)的语法糖就像预告片里的新型光剑一样令人兴奋不已。现在Java中实现并发编程存在多种方式,我们希望了解这么做所带来的性能提升及风险是什么。从经过260多次测试之后拿到的数据来看,还是增加了不少新的见解的,这里我们想和大家分享一下。