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   Foreword

One point that I attempt to impress upon people learning about 
Big Data is that while Apache Hadoop is quite useful, and most 
certainly quite successful as a technology, the underlying premise has 
become dated. Consider the timeline: MapReduce implementation 
by Google came from work that dates back to 2002, published in 
2004. Yahoo! began to sponsor the Hadoop project in 2006. MR is 
based on the economics of data centers from a decade ago. Since that 
time, so much has changed: multi-core processors, large memory 
spaces, 10G networks, SSDs, and such, have become cost-effective 
in the years since. These dramatically alter the trade-offs for building 
fault-tolerant distributed systems at scale on commodity hardware.

Moreover, even our notions of what can be accomplished with 
data at scale have also changed. Successes of firms such as Amazon, 
eBay, and Google raised the bar, bringing subsequent business leaders 
to rethink, “What can be performed with data?” For example, would 
there have been a use case for large-scale graph queries to optimize 
business for a large book publisher a decade ago? No, not particularly. 
It is unlikely that senior executives in publishing would have bothered 
to read such an outlandish engineering proposal. The marketing of this 
book itself will be based on a large-scale, open source, graph query 
engine described in subsequent chapters. Similarly, the ad-tech and 
social network use cases that drove the development and adoption of 
Apache Hadoop are now dwarfed by data rates from the Industrial 
Internet, the so-called “Internet of Things” (IoT)—in some cases, by 
several orders of magnitude.

The shape of the underlying systems has changed so much 
since MR at scale on commodity hardware was first formulated. 
The shape of our business needs and expectations has also changed 
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dramatically because many people have begun to realize what is 
possible. Furthermore, the applications of math for data at scale are 
quite different than what would have been conceived a decade ago. 
Popular programming languages have evolved along with that to 
support better software engineering practices for parallel processing.

Dr. Agneeswaran considers these topics and more in a careful, 
methodical approach, presenting a thorough view of the contemporary 
Big Data environment and beyond. He brings the read to look past 
the preceding decade’s fixation on batch analytics via MapReduce. 
The chapters include historical context, which is crucial for key 
understandings, and they provide clear business use cases that are 
crucial for applying this technology to what matters. The arguments 
provide analyses, per use case, to indicate why Hadoop does not 
particularly fit—thoroughly researched with citations, for an excellent 
survey of available open source technologies, along with a review of 
the published literature for that which is not open source.

This book explores the best practices and available technologies 
for data access patterns that are required in business today beyond 
Hadoop: iterative, streaming, graphs, and more. For example, in some 
businesses revenue loss can be measured in milliseconds, such that the 
notion of a “batch window” has no bearing. Real-time analytics are the 
only conceivable solutions in those cases. Open source frameworks 
such as Apache Spark, Storm, Titan, GraphLab, and Apache Mesos 
address these needs. Dr. Agneeswaran guides the reader through the 
architectures and computational models for each, exploring common 
design patterns. He includes both the scope of business implications 
as well as the details of specific implementations and code examples.

Along with these frameworks, this book also presents a compelling 
case for the open standard PMML, allowing predictive models to be 
migrated consistently between different platforms and environments. 
It also leads up to YARN and the next generation beyond MapReduce.
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This is precisely the focus that is needed in industry today—given 
that Hadoop was based on IT economics from 2002, while the newer 
frameworks address contemporary industry use cases much more 
closely. Moreover, this book provides both an expert guide and a warm 
welcome into a world of possibilities enabled by Big Data analytics.

Paco Nathan
Author of Enterprise Data Workflows with Cascading; 
Advisor at Zettacap and Amplify Partners 
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 1

   1 
 Introduction: Why Look 

Beyond Hadoop Map-Reduce?  

    Perhaps you are a video service provider and would like to opti-
mize the end user experience by choosing the appropriate content 
distribution network based on dynamic network conditions. Or you 
are a government regulatory body that needs to classify Internet pages 
into porn or non-porn in order to filter porn pages—which has to be 
achieved at high throughput and in real-time. Or you are a telecom/
mobile service provider, or you work for one, and you are worried 
about customer churn ( churn  refers to a customer leaving the pro-
vider and choosing a competitor, or new customers joining in leaving 
competitors). How you  wish you had known that the last customer 
who was on the phone with your call center had tweeted with nega-
tive sentiments about you a day before. Or you are a retail storeowner 
and you would love to have predictions about the customers’ buying 
patterns after they enter the store so that you can run promotions on 
your products and expect an increase in sales. Or you are a healthcare 
insurance provider for whom it is imperative to compute the probabil-
ity that a customer is likely to be hospitalized in the next year so that 
you can fix appropriate premiums.  Or you are a Chief Technology 
Officer (CTO) of a financial product company who wishes that you 
could have real-time trading/predictive algorithms that can help your 
bottom line. Or you work for an electronic manufacturing company 
and you would like to predict failures and identify root causes during 
test runs so that the subsequent real-runs are effective. Welcome to 
the world of possibilities, thanks to big data analytics.  
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 Analytics has been around for a long time now—North Carolina 
State University ran a project called “Statistical Analysis System (SAS)” 
for agricultural research in the late 1960s that led to the formation of 
the SAS Company. The only difference between the terms  analysis  
and  analytics  is that analytics is about analyzing data and convert-
ing it into actionable insights. The term  Business Intelligence (BI)  is 
also used often to refer to analysis in a business environment, possibly 
originating in a 1958 article by Peter Luhn (Luhn 1958). Lots of BI 
applications were run over data warehouses, even quite recently. The 
evolution of “big data”  in contrast to the “analytics” term has been 
quite recent, as explained next.  

 The term  big data  seems to have been used first by John R. 
Mashey, then chief scientist of Silicon Graphics Inc. (SGI), in a Use-
nix conference invited talk titled “Big Data and the Next Big Wave of 
InfraStress,” the transcript of which is available at  http://static.usenix.
org/event/usenix99/invited_talks/mashey.pdf . The term was also used 
in a paper (Bryson et al. 1999) published in the Communications of 
the Association for Computing Machinery (ACM). The report (Laney 
2001) from the META group (now Gartner) was the first to iden-
tify the 3 Vs (volume, variety, and velocity) perspective of big data. 
Google’s seminal paper on Map-Reduce (MR;  Dean and Ghemawat 
2004) was the trigger that led to lots of developments in the big data 
space. Though the MR paradigm was known in the functional pro-
gramming literature, the paper provided scalable implementations of 
the paradigm on a cluster of nodes. The paper, along with Apache 
Hadoop, the open source implementation of the MR paradigm, 
enabled end users to process large data sets on a cluster of nodes—a 
usability paradigm shift. Hadoop, which comprises the MR imple-
mentation, along with the Hadoop Distributed File System (HDFS), 
has now become the de facto standard for data processing, with a 
lot of  industrial game changers such as Disney, Sears, Walmart, and 
AT&T having their own Hadoop cluster installations.   

http://static.usenix.org/event/usenix99/invited_talks/mashey.pdf
http://static.usenix.org/event/usenix99/invited_talks/mashey.pdf
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     Hadoop Suitability  

 Hadoop is good for a number of use cases, including those in 
which the data can be partitioned into independent chunks—the 
embarrassingly parallel applications, as is widely known. Hindrances 
to widespread adoption of Hadoop across Enterprises include the 
following:  

    •   Lack of Object Database Connectivity (ODBC)—A lot of BI 
tools are forced to build separate Hadoop connectors.   

   •   Hadoop’s lack of suitability for all types of applications:  

     •    If data splits are interrelated or computation needs to access 
data across splits, this might involve joins and might not run 
efficiently over Hadoop. For example, imagine that you have 
a set of stocks and the set of values of those stocks at vari-
ous time points. It is required to compute correlations across 
stocks—can you check when Apple falls? What is the prob-
ability of Samsung too falling the next day? The computation 
cannot be split into independent chunks—you may have to 
compute correlation between stocks in different chunks, if 
the chunks carry different stocks. If the data is split along  
the time line, you would still need to compute correlation 
between stock prices at different points of time, which may 
be in different chunks.   

   •   For iterative computations, Hadoop MR is not well-suited for 
two reasons. One is the overhead of fetching data from HDFS 
for each iteration (which can be amortized by a distributed 
caching layer), and the other is the lack of long-lived MR jobs 
in Hadoop. Typically, there is a termination condition check 
that must be executed outside of the MR job, so as to deter-
mine whether the computation is complete. This implies 
that new MR jobs need to be initialized for each iteration 
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in Hadoop—the overhead of initialization could overwhelm 
computation for the iteration and could cause significant per-
formance hits.      

 The other perspective of Hadoop suitability can be understood by 
looking at the characterization of the computation paradigms required 
for analytics on massive data sets, from the National Academies Press 
(NRC 2013). They term the seven categories as seven “giants” in 
contrast with the “dwarf” terminology that was used to characterize 
fundamental computational tasks in the super-computing literature 
(Asanovic et al. 2006). These are the seven “giants”:  

    1.    Basic statistics:     This category involves basic statistical opera-
tions such as computing the mean, median, and variance, as 
well as things like order statistics and counting. The operations 
are typically O(N) for N points and are typically embarrassingly 
parallel, so perfect for Hadoop.   

   2.    Linear algebraic computations:     These computations involve 
linear systems, eigenvalue problems, inverses from problems 
such as linear regression, and Principal Component Analysis 
(PCA). Linear regression is doable over Hadoop (Mahout has 
the implementation), whereas PCA is not easy. Moreover, a 
formulation of multivariate statistics in matrix form is difficult 
to realize over Hadoop. Examples of this type include kernel 
PCA and kernel regression.   

   3.    Generalized N-body problems:     These are problems that 
involve distances, kernels, or other kinds of similarity between 
points or sets of points (tuples). Computational complexity is 
typically O(N 2 ) or even O(N 3 ). The typical problems include 
range searches, nearest neighbor search problems, and non-
linear dimension reduction methods. The simpler solutions of 
N-body problems such as k-means clustering are solvable over 
Hadoop, but not the complex ones such as kernel PCA, kernel 
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Support Vector Machines (SVM), and kernel discriminant 
analysis.   

   4.    Graph theoretic computations:     Problems that involve graph 
as the data or that can be modeled graphically fall into this cat-
egory. The computations on graph data include centrality, com-
mute distances, and ranking. When the statistical model is a 
graph, graph search is important, as are computing probabilities 
which are operations known as inference. Some graph theoretic 
computations that can be posed as linear algebra problems can 
be solved over Hadoop, within the limitations specified under 
giant 2. Euclidean graph problems are hard to realize over 
Hadoop as they become generalized N-body problems. More-
over, major computational challenges arise when you are deal-
ing with large sparse  graphs; partitioning them across a cluster 
is hard.   

   5.    Optimizations:     Optimization problems involve minimiz-
ing (convex) or maximizing (concave) a function that can be 
referred to as an objective, a loss, a cost, or an energy func-
tion. These problems can be solved in various ways. Stochas-
tic approaches are amenable to be implemented in Hadoop. 
(Mahout has an implementation of stochastic gradient descent.) 
Linear or quadratic programming approaches are harder to 
realize over Hadoop, because they involve complex iterations 
and operations on large matrices, especially at high dimensions. 
One approach to solve optimization problems has been shown 
to be solvable on Hadoop, but by realizing a construct known 
as All-Reduce (Agarwal et  al. 2011). However, this approach 
might not be fault-tolerant and might not be generalizable. 
Conjugate gradient descent (CGD), due to its iterative nature, 
is also hard to realize over Hadoop. The work of Stephen Boyd 
and his colleagues from Stanford has precisely addressed this 
giant. Their paper (Boyd et al. 2011) provides insights on how 
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to combine dual decomposition and augmented Lagrangian 
into an optimization algorithm known as Alternating Direction 
Method of Multipliers (ADMM). The ADMM has been real-
ized efficiently over Message Passing Interface (MPI), whereas 
the Hadoop implementation would require several iterations 
and might not be so efficient.   

   6.    Integrations:     The mathematical operation of integration 
of functions is important in big data analytics. They arise 
in Bayesian inference as well as in random effects models. 
Quadrature approaches that are sufficient for low-dimensional 
integrals might be realizable on Hadoop, but not those for high-
dimensional integration which arise in Bayesian inference 
approach for big data analytical problems. (Most recent appli-
cations of big data deal with high-dimensional data—this is cor-
roborated among others by Boyd et al. 2011.) For example, one 
common approach for solving high-dimensional integrals is the 
Markov Chain Monte Carlo (MCMC) (Andrieu 2003), which 
is hard to realize over  Hadoop. MCMC is iterative in nature 
because the chain must converge to a stationary distribution, 
which might happen after several iterations only.   

   7.    Alignment problems:     The alignment problems are those 
that involve matching between data objects or sets of objects. 
They occur in various domains—image de-duplication, match-
ing catalogs from different instruments in astronomy, multiple 
sequence alignments used in computational biology, and so 
on. The simpler approaches in which the alignment problem 
can be posed as a linear algebra problem can be realized over 
Hadoop. But the other forms might be hard to realize over 
Hadoop—when either dynamic programming is used or Hid-
den Markov Models (HMMs) are used. It must be noted that 
dynamic programming needs iterations/recursions. The catalog 
cross-matching problem can be posed as a  generalized N-body 
problem, and the discussion outlined earlier in point 3 applies.    
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 To summarize, giant 1 is perfect for Hadoop, and in all other 
giants, simpler problems or smaller versions of the giants are doable 
in Hadoop—in fact, we can call them dwarfs, Hadoopable problems/
algorithms! The limitations of Hadoop and its lack of suitability for 
certain classes of applications have motivated some researchers to 
come up with alternatives. Researchers at the University of Berkeley 
have proposed “Spark” as one such alternative—in other words, Spark 
could be seen as the next-generation data processing alternative to 
Hadoop in the big data space. In the previous seven giants categoriza-
tion, Spark would be efficient for  

    •   Complex linear algebraic problems (giant 2)   

   •   Generalized N-body problems (giant 3), such as kernel SVMs 
and kernel PCA   

   •   Certain optimization problems (giant 4), for example, 
approaches involving CGD    

 An effort has been made to apply Spark for another giant, namely, 
graph theoretic computations in GraphX (Xin et al. 2013). It would 
be an interesting area of further research to estimate the efficiency 
of Spark for other classes of problems or other giants such as integra-
tions and alignment problems.  

 The key idea distinguishing Spark is its in-memory computation, 
allowing data to be cached in memory across iterations/interactions. 
Initial performance studies have shown that Spark can be 100 times 
faster than Hadoop for certain applications. This book explores Spark 
as well as the other components of the Berkeley Data Analytics Stack 
(BDAS), a data processing alternative to Hadoop, especially in the 
realm of big data analytics that involves realizing machine learning 
(ML) algorithms. When using the term  big data analytics,  I refer to 
the capability to ask questions on large data sets and answer them 
appropriately, possibly by using ML techniques  as the foundation. I 
will also discuss the alternatives to Spark in this space—systems such 
as HaLoop and Twister.  
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 The other dimension for which the beyond-Hadoop thinking is 
required is for real-time analytics. It can be inferred that Hadoop is 
basically a batch processing system and is not well suited for real-time 
computations. Consequently, if analytical algorithms are required to 
be run in real time or near real time, Storm from Twitter has emerged 
as an interesting alternative in this space, although there are other 
promising contenders, including S4 from Yahoo and Akka from Type-
safe. Storm has matured faster and has more production use cases 
than the others. Thus, I will discuss Storm in more detail in the later  
chapters of this book—though I will also attempt a comparison with 
the other alternatives for real-time analytics.  

 The third dimension where beyond-Hadoop thinking is required 
is when there are specific complex data structures that need special-
ized processing—a graph is one such example. Twitter, Facebook, and 
LinkedIn, as well as a host of other social networking sites, have such 
graphs. They need to perform operations on the graphs, for example, 
searching for people you might know on LinkedIn or a graph search in 
Facebook (Perry 2013). There have been some efforts to use Hadoop 
for graph processing, such as Intel’s GraphBuilder. However, as out-
lined in the GraphBuilder paper (Jain et al. 2013), it is targeted at 
construction and  transformation and is useful for building the initial 
graph from structured or unstructured data. GraphLab (Low et al. 
2012) has emerged as an important alternative for processing graphs 
efficiently. By processing, I mean running page ranking or other ML 
algorithms on the graph. GraphBuilder can be used for construct-
ing the graph, which can then be fed into GraphLab for processing. 
GraphLab is focused on giant 4, graph theoretic computations. The 
use of GraphLab for any of the other giants is an interesting topic of 
further research.  

 The emerging focus of big data analytics is to make traditional 
techniques, such as market basket analysis, scale, and work on large 
data sets. This is reflected in the approach of SAS and other traditional 
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vendors to build Hadoop connectors. The other emerging approach 
for analytics focuses on new algorithms or techniques from ML and 
data mining for solving complex analytical problems, including those 
in video and real-time analytics. My perspective is that Hadoop is just 
one such paradigm, with a whole new set of others that are emerg-
ing, including Bulk Synchronous Parallel (BSP)-based paradigms and 
graph processing paradigms, which  are more suited to realize iterative 
ML algorithms. The following discussion should help clarify the big 
data analytics spectrum, especially from an ML realization perspec-
tive. This should help put in perspective some of the key aspects of 
the book and establish the beyond-Hadoop thinking along the three 
dimensions of real-time analytics, graph computations, and batch ana-
lytics that involve complex problems (giants 2 through 7).   

  Big Data Analytics: Evolution of Machine 
Learning Realizations  

 I will explain the different paradigms available for implementing 
ML algorithms, both from the literature and from the open source 
community. First of all, here’s a view of the three generations of ML 
tools available today:  

    1.   The traditional ML tools for ML and statistical analysis, includ-
ing SAS, SPSS from IBM, Weka, and the R language. These 
allow deep analysis on smaller data sets—data sets that can fit 
the memory of the node on which the tool runs.   

   2.   Second-generation ML tools such as Mahout, Pentaho, and 
RapidMiner. These allow what I call a shallow analysis of big 
data. Efforts to scale traditional tools over Hadoop, including 
the work of Revolution Analytics (RHadoop) and SAS over 
Hadoop, would fall into the second-generation category.   
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   3.   The third-generation tools such as Spark, Twister, HaLoop, 
Hama, and GraphLab. These facilitate deeper analysis of big 
data. Recent efforts by traditional vendors such as SAS in-
memory analytics also fall into this category.    

  First-Generation ML Tools/Paradigms  

 The first-generation ML tools can facilitate deep analytics because 
they have a wide set of ML algorithms. However, not all of them can 
work on large data sets—like terabytes or petabytes of data—due to 
scalability limitations (limited by the nondistributed nature of the 
tool). In other words, they are vertically scalable (you can increase 
the processing power of the node on which the tool runs), but not 
horizontally scalable (not all of them can run on a cluster). The first-
generation tool vendors are addressing those limitations by building 
Hadoop connectors as well as providing clustering options—meaning 
that the vendors have  made efforts to reengineer the tools such as R 
and SAS to scale horizontally. This would come under the second-/
third-generation tools and is covered subsequently.   

  Second-Generation ML Tools/Paradigms  

 The second-generation tools (we can now term the traditional ML 
tools such as SAS as first-generation tools) such as Mahout ( http://
mahout.apache.org ), Rapidminer, and Pentaho provide the capabil-
ity to scale to large data sets by implementing the algorithms over 
Hadoop, the open source MR implementation. These tools are matur-
ing fast and are open source (especially Mahout). Mahout has a set of 
algorithms for clustering and classification, as well as a very good rec-
ommendation algorithm (Konstan and Riedl 2012). Mahout can thus 
be said to work on big data, with a number of production use cases, 
mainly for the recommendation system. I  have also used Mahout 
in a production system for realizing recommendation algorithms 

http://mahout.apache.org
http://mahout.apache.org
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in financial domain and found it to be scalable, though not without 
issues. (I had to tweak the source significantly.) One observation 
about Mahout is that it implements only a smaller subset of ML algo-
rithms over Hadoop—only 25 algorithms are of production quality, 
with only 8 or 9 usable over Hadoop, meaning scalable over large data 
sets. These include the linear regression, linear SVM, the K-means 
clustering, and so forth. It does provide a fast sequential implementa-
tion of the logistic regression, with parallelized training. However, as 
several others have  also noted (see Quora.com, for instance), it does 
not have implementations of nonlinear SVMs or multivariate logistic 
regression (discrete choice model, as it is otherwise known).  

 Overall, this book is not intended for Mahout bashing. However, 
my point is that it is quite hard to implement certain ML algorithms 
including the kernel SVM and CGD (note that Mahout has an imple-
mentation of stochastic gradient descent) over Hadoop. This has been 
pointed out by several others as well—for instance, see the paper by 
Professor Srirama (Srirama et al. 2012). This paper makes detailed 
comparisons between Hadoop and Twister MR (Ekanayake et al. 
2010) with regard to iterative algorithms such as CGD and shows 
that the overheads can be significant for Hadoop. What do I mean by 
iterative?  A set of entities that perform a certain computation, wait for 
results from neighbors or other entities, and start the next iteration. 
The CGD is a perfect example of iterative ML algorithm—each CGD 
can be broken down into  daxpy ,  ddot , and  matmul  as the primitives. 
I will explain these three primitives:  daxpy  is an operation that takes 
a vector  x , multiplies it by a constant  k , and adds another vector  y  
to it;  ddot  computes the dot product of two vectors  x  and  y ;  matmul  
multiplies a matrix by a vector and produces a vector output. This 
means 1 MR per primitive, leading to 6 MRs  per iteration and even-
tually 100s of MRs per CG computation, as well as a few gigabytes 
(GB)s of communication even for small matrices. In essence, the 
setup cost per iteration (which includes reading from HDFS into 
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memory) overwhelms the computation for that iteration, leading to 
performance degradation in Hadoop MR. In contrast, Twister distin-
guishes between static and variable data, allowing data to be in mem-
ory across MR iterations, as well as a combine phase for collecting all 
 reduce  phase outputs and, hence, performs significantly better.  

 The other second-generation tools are the traditional tools that 
have been scaled to work over Hadoop. The choices in this space 
include the work done by Revolution Analytics, among others, to 
scale R over Hadoop and the work to implement a scalable runtime 
over Hadoop for R programs (Venkataraman et al. 2012). The SAS 
in-memory analytics, part of the High Performance Analytics toolkit 
from SAS, is another attempt at scaling a traditional tool by using a 
Hadoop cluster. However, the recently released version works over 
Greenplum/Teradata in addition to Hadoop—this could then be 
seen as a third-generation approach. The other  interesting work is 
by a small start-up known as Concurrent Systems, which is provid-
ing a Predictive Modeling Markup Language (PMML) runtime over 
Hadoop. PMML is like the eXtensible Markup Language (XML) of 
modeling, allowing models to be saved in descriptive language files. 
Traditional tools such as R and SAS allow the models to be saved as 
PMML files. The runtime over Hadoop would allow these model files 
to be scaled over a Hadoop cluster, so this also falls in our second-
generation tools/paradigms.   

  Third-Generation ML Tools/Paradigms  

 The limitations of Hadoop and its lack of suitability for certain 
classes of applications have motivated some researchers to come up 
with alternatives. The efforts in the third generation have been to look 
beyond Hadoop for analytics along different dimensions. I discuss the 
approaches along the three dimensions, namely, iterative ML algo-
rithms, real-time analytics, and graph processing.  
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  Iterative Machine Learning Algorithms  

 Researchers at the University of Berkeley have proposed “Spark” 
(Zaharia et al. 2010) as one such alternative—in other words, Spark 
could be seen as the next-generation data processing alternative to 
Hadoop in the big data space. The key idea distinguishing Spark is 
its in-memory computation, allowing data to be cached in memory 
across iterations/interactions. The main motivation for Spark was that 
the commonly used MR paradigm, while being suitable for some 
applications that can be expressed as acyclic data flows, was not suit-
able for other applications, such as those that need to reuse working 
sets across iterations. So they proposed  a new paradigm for cluster 
computing that can provide similar guarantees or fault tolerance (FT) 
as MR but would also be suitable for iterative and interactive applica-
tions. The Berkeley researchers have proposed BDAS as a collection 
of technologies that help in running data analytics tasks across a clus-
ter of nodes. The lowest-level component of the BDAS is Mesos, the 
cluster manager that helps in task allocation and resource manage-
ment tasks of the cluster. The second component is the Tachyon file 
system built on top of Mesos. Tachyon provides a distributed file sys-
tem abstraction and provides interfaces for file operations across  the 
cluster. Spark, the computation paradigm, is realized over Tachyon 
and Mesos in a specific embodiment, although it could be realized 
without Tachyon and even without Mesos for clustering. Shark, which 
is realized over Spark, provides a Structured Query Language (SQL) 
abstraction over a cluster—similar to the abstraction Hive provides 
over Hadoop. Zacharia et al. article explores Spark, which is the main 
ingredient over which ML algorithms can be built.  

 The HaLoop work (Bu et al. 2010) also extends Hadoop for 
iterative ML algorithms—HaLoop not only provides a program-
ming abstraction for expressing iterative applications, but also uses 
the notion of caching to share data across iterations and for fixpoint 
verification (termination of iteration), thereby improving efficiency. 
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Twister ( http://iterativemapreduce.org ) is another effort similar to 
HaLoop.   

  Real-time Analytics  

 The second dimension for beyond-Hadoop thinking comes from 
real-time analytics. Twitter from Storm has emerged as the best con-
tender in this space. Storm is a scalable Complex Event Processing 
(CEP) engine that enables complex computations on event streams in 
real time. The components of a Storm cluster are  

    •   Spouts that read data from various sources. HDFS spout, Kafka 
spout, and Transmission Control Protocol (TCP) stream spout 
are examples.   

   •   Bolts that process the data. They run the computations on the 
streams. ML algorithms on the streams typically run here.   

   •   Topology. This is an application-specific wiring together of 
spouts and bolts—topology gets executed on a cluster of nodes.    

 An architecture comprising a Kafka (a distributed queuing sys-
tem from LinkedIn) cluster as a high-speed data ingestor and a Storm 
cluster for processing/analytics works well in practice, with a Kafka 
spout reading data from the Kafka cluster at high speed. The Kafka 
cluster stores up the events in the queue. This is necessary because 
the Storm cluster is heavy in processing due to the ML involved. The 
details of this architecture, as well as the steps needed to run ML 
algorithms in a Storm cluster, are covered in subsequent chapters of 
the book. Storm is also compared to the other  contenders in real-time 
computing, including S4 from Yahoo and Akka from Typesafe.   

  Graph Processing Dimension  

 The other important tool that has looked beyond Hadoop MR 
comes from Google—the Pregel framework for realizing graph com-
putations (Malewicz et al. 2010). Computations in Pregel comprise a 

http://iterativemapreduce.org
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series of iterations, known as  supersteps.  Each vertex in the graph is 
associated with a user-defined  compute  function; Pregel ensures at 
each superstep that the user-defined compute function is invoked in 
parallel on each edge. The vertices can send messages through the 
edges and exchange values with other vertices. There is also the global 
barrier—which moves forward after all compute functions are ter-
minated. Readers familiar with BSP can see why Pregel is a perfect  
example of BSP—a set of entities computing user-defined functions 
in parallel with global synchronization and able to exchange messages.  

 Apache Hama (Seo et al. 2010) is the open source equiva-
lent of Pregel, being an implementation of the BSP. Hama realizes 
BSP over the HDFS, as well as the Dryad engine from Micro-
soft. It might be that they do not want to be seen as being differ-
ent from the Hadoop community. But the important thing is that 
BSP is an inherently well-suited paradigm for iterative computa-
tions, and Hama has parallel implementations of the CGD, which I 
said is not easy to realize over Hadoop. It must be noted that the 
BSP engine in Hama is realized over MPI,  the father (and mother) 
of parallel programming literature ( www.mcs.anl.gov/research/
projects/mpi/ ). The other projects that are inspired by Pregel are 
 Apache Giraph, Golden Orb, and Stanford GPS.   

 GraphLab (Gonzalez et al. 2012) has emerged as a state-of-the-
art graph processing paradigm. GraphLab originated as an academic 
project from the University of Washington and Carnegie Mellon Uni-
versity (CMU). GraphLab provides useful abstractions for process-
ing graphs across a cluster of nodes deterministically. PowerGraph, 
the subsequent version of GraphLab, makes it efficient to process 
natural graphs or power law graphs—graphs that have a high number 
of poorly connected vertices and a low number of highly connected 
vertices. Performance evaluations on the Twitter graph for page-
ranking and triangle counting problems have verified the efficiency 
of GraphLab compared to other approaches. The focus  of this book is 
mainly on Giraph, GraphLab, and related efforts.  

http://www.mcs.anl.gov/research/projects/mpi/
http://www.mcs.anl.gov/research/projects/mpi/
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  Table   1.1    carries a comparison of the various paradigms across 
different nonfunctional features such as scalability, FT, and the algo-
rithms that have been implemented. It can be inferred that although 
the traditional tools have worked on only a single node and might not 
scale horizontally and might also have single points of failure, recent 
reengineering efforts have made them move across generations. The 
other point to be noted is that most of the graph processing para-
digms are not fault-tolerant, whereas Spark and HaLoop are among 
the third-generation tools that provide FT.  

  Table 1.1   Three Generations of Machine Learning Realizations  

  Generation   
  First 
Generation     Second Generation     Third Generation   

 Examples   Statistical 
Analysis 
System (SAS), 
R, Weka, SPSS 
in native form  

 Mahout, Pentaho, 
Revolution R, 
SAS In-memory 
Analytics (Hadoop), 
concurrent systems  

 Spark, HaLoop, 
GraphLab, Pregel, SAS 
In-memory Analytics 
(Greenplum/Teradata), 
Giraph, Golden ORB, 
Stanford GPS, ML over 
Storm  

 Scalability   Vertical   Horizontal (over 
Hadoop)  

 Horizontal (beyond 
Hadoop)  

 Algorithms 
Available  

 Huge 
collection of 
algorithms  

 Small subset—
sequential logistic 
regression, linear 
SVMs, Stochastic 
Gradient Descent, 
K-means clustering, 
Random Forests, etc.  

 Much wider—including 
CGD, Alternating 
Least Squares (ALS), 
collaborative filtering, 
kernel SVM, belief 
propagation, matrix 
factorization, Gibbs 
sampling, etc.  

 Algorithms 
Not Available  

 Practically 
nothing  

 Vast number—
Kernel SVMs, 
Multivariate 
Logistic Regression, 
Conjugate Gradient 
Descent (CGD), 
ALS, etc.  

 Multivariate Logistic 
Regression in general 
form, K-means 
clustering, etc.; work 
in progress to expand 
the set of algorithms 
available  

 Fault 
Tolerance 
(FT)  

 Single point of 
failure  

 Most tools are 
FT, because they 
are built on top of 
Hadoop  

 FT: HaLoop, Spark  

 Not FT: Pregel, 
GraphLab, Giraph  
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     Closing Remarks  

 This chapter has set the tone for the book by discussing the limita-
tions of Hadoop along the lines of the seven giants. It has also brought 
out the three dimensions along which thinking beyond Hadoop is 
necessary:  

    1.   Real-time analytics: Storm and Spark streaming are the choices.   

   2.   Analytics involving iterative ML: Spark is the technology of 
choice.   

   3.   Specialized data structures and processing requirements for 
these: GraphLab is an important paradigm to process large 
graphs.    

 These are elaborated in the subsequent chapters of this book. 
Happy reading!   
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