

 Big Data Analytics
Beyond Hadoop

This page intentionally left blank

 Big Data Analytics
Beyond Hadoop

Real-Time Applications with Storm,
Spark, and More Hadoop Alternatives

 Vijay Srinivas Agneeswaran, Ph.D.

 Associate Publisher: Amy Neidlinger
 Executive Editor: Jeanne Glasser Levine
 Operations Specialist: Jodi Kemper
 Cover Designer: Chuti Prasertsith
 Managing Editor: Kristy Hart
 Senior Project Editor: Lori Lyons
 Copy Editor: Cheri Clark
 Proofreader: Anne Goebel
Senior Indexer: Cheryl Lenser
 Compositor: Nonie Ratcliff
 Manufacturing Buyer: Dan Uhrig

 © 2014 by Vijay Srinivas Agneeswaran

 Pearson Education, Inc.

 Upper Saddle River, New Jersey 07458

 For information about buying this title in bulk quantities, or for special sales opportuni-
ties (which may include electronic versions; custom cover designs; and content particular
to your business, training goals, marketing focus, or branding interests), please contact
our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

 For government sales inquiries, please contact governmentsales@pearsoned.com .

 For questions about sales outside the U.S., please contact international@pearsoned.com .

 Company and product names mentioned herein are the trademarks or registered trade-
marks of their respective owners.

Apache Hadoop is a trademark of the Apache Software Foundation.

 All rights reserved. No part of this book may be reproduced, in any form or by any
means, without permission in writing from the publisher.

 Printed in the United States of America

 First Printing April 2014

 ISBN-10: 0-13-383794-7
 ISBN-13: 978-0-13-383794-0

 Pearson Education LTD.
 Pearson Education Australia PTY, Limited.
 Pearson Education Singapore, Pte. Ltd.
 Pearson Education Asia, Ltd.
 Pearson Education Canada, Ltd.
 Pearson Educación de Mexico, S.A. de C.V.
 Pearson Education—Japan
 Pearson Education Malaysia, Pte. Ltd.

 Library of Congress Control Number: 2014933363

 This book is dedicated at the feet
of Lord Nataraja.

This page intentionally left blank

Contents

 Foreword . ix

 About the Author . xvii

Chapter 1 Introduction: Why Look Beyond Hadoop
Map-Reduce? .1

Hadoop Suitability . 3
Big Data Analytics: Evolution of Machine
Learning Realizations . 9
Closing Remarks . 17
References. 17

Chapter 2 What Is the Berkeley Data Analytics
Stack (BDAS)? .21

Motivation for BDAS . 21
BDAS Design and Architecture. 26
Spark: Paradigm for Efficient Data Processing
on a Cluster . 31
Shark: SQL Interface over a Distributed System 42
Mesos: Cluster Scheduling and Management System . . . 46
Closing Remarks . 52
References. 54

Chapter 3 Realizing Machine Learning Algorithms
with Spark. .61

Basics of Machine Learning . 61
Logistic Regression: An Overview 67
Logistic Regression Algorithm in Spark. 70
Support Vector Machine (SVM) . 74
PMML Support in Spark . 79
Machine Learning on Spark with MLbase 90
References. 91

viii BIG DATA ANALYTICS BEYOND HADOOP

Chapter 4 Realizing Machine Learning Algorithms
in Real Time. .93

Introduction to Storm. 93
Design Patterns in Storm . 102
Implementing Logistic Regression Algorithm
in Storm. 107
Implementing Support Vector Machine Algorithm
in Storm. 110
Naive Bayes PMML Support in Storm 113
Real-Time Analytic Applications 116
Spark Streaming . 124
References. 126

Chapter 5 Graph Processing Paradigms. .129

Pregel: Graph-Processing Framework Based
on BSP. 130
Open Source Pregel Implementations. 134
GraphLab . 138
References. 156

 Chapter 6 Conclusions: Big Data Analytics Beyond
Hadoop Map-Reduce. .161

Overview of Hadoop YARN . 162
Other Frameworks over YARN . 165
What Does the Future Hold for Big Data Analytics? . . . 166
References. 169

Appendix A Code Sketches .171

Code for Naive Bayes PMML Scoring in Spark 171
Code for Linear Regression PMML Support
in Spark . 182
Page Rank in GraphLab . 186
SGD in GraphLab . 191

 Index. 209

 Foreword

One point that I attempt to impress upon people learning about
Big Data is that while Apache Hadoop is quite useful, and most
certainly quite successful as a technology, the underlying premise has
become dated. Consider the timeline: MapReduce implementation
by Google came from work that dates back to 2002, published in
2004. Yahoo! began to sponsor the Hadoop project in 2006. MR is
based on the economics of data centers from a decade ago. Since that
time, so much has changed: multi-core processors, large memory
spaces, 10G networks, SSDs, and such, have become cost-effective
in the years since. These dramatically alter the trade-offs for building
fault-tolerant distributed systems at scale on commodity hardware.

Moreover, even our notions of what can be accomplished with
data at scale have also changed. Successes of firms such as Amazon,
eBay, and Google raised the bar, bringing subsequent business leaders
to rethink, “What can be performed with data?” For example, would
there have been a use case for large-scale graph queries to optimize
business for a large book publisher a decade ago? No, not particularly.
It is unlikely that senior executives in publishing would have bothered
to read such an outlandish engineering proposal. The marketing of this
book itself will be based on a large-scale, open source, graph query
engine described in subsequent chapters. Similarly, the ad-tech and
social network use cases that drove the development and adoption of
Apache Hadoop are now dwarfed by data rates from the Industrial
Internet, the so-called “Internet of Things” (IoT)—in some cases, by
several orders of magnitude.

The shape of the underlying systems has changed so much
since MR at scale on commodity hardware was first formulated.
The shape of our business needs and expectations has also changed

x BIG DATA ANALYTICS BEYOND HADOOP

dramatically because many people have begun to realize what is
possible. Furthermore, the applications of math for data at scale are
quite different than what would have been conceived a decade ago.
Popular programming languages have evolved along with that to
support better software engineering practices for parallel processing.

Dr. Agneeswaran considers these topics and more in a careful,
methodical approach, presenting a thorough view of the contemporary
Big Data environment and beyond. He brings the read to look past
the preceding decade’s fixation on batch analytics via MapReduce.
The chapters include historical context, which is crucial for key
understandings, and they provide clear business use cases that are
crucial for applying this technology to what matters. The arguments
provide analyses, per use case, to indicate why Hadoop does not
particularly fit—thoroughly researched with citations, for an excellent
survey of available open source technologies, along with a review of
the published literature for that which is not open source.

This book explores the best practices and available technologies
for data access patterns that are required in business today beyond
Hadoop: iterative, streaming, graphs, and more. For example, in some
businesses revenue loss can be measured in milliseconds, such that the
notion of a “batch window” has no bearing. Real-time analytics are the
only conceivable solutions in those cases. Open source frameworks
such as Apache Spark, Storm, Titan, GraphLab, and Apache Mesos
address these needs. Dr. Agneeswaran guides the reader through the
architectures and computational models for each, exploring common
design patterns. He includes both the scope of business implications
as well as the details of specific implementations and code examples.

Along with these frameworks, this book also presents a compelling
case for the open standard PMML, allowing predictive models to be
migrated consistently between different platforms and environments.
It also leads up to YARN and the next generation beyond MapReduce.

 FOREWORD xi

This is precisely the focus that is needed in industry today—given
that Hadoop was based on IT economics from 2002, while the newer
frameworks address contemporary industry use cases much more
closely. Moreover, this book provides both an expert guide and a warm
welcome into a world of possibilities enabled by Big Data analytics.

Paco Nathan
Author of Enterprise Data Workflows with Cascading;
Advisor at Zettacap and Amplify Partners

This page intentionally left blank

 ACKNOWLEDGMENTS xiii

 Acknowledgments

 First and foremost, I would like to sincerely thank Vineet Tyagi,
AVP and head of Innovation Labs at Impetus. Vineet has been
instrumental and enabled me to take up book writing. He has been
kind enough to give me three hours of official time over six to seven
months—this has been crucial in helping me write the book. Any such
scholarly activity needs consistent, dedicated time—it would have
been doubly hard if I had to write the book in addition to my day job.
Vineet just made it so that at least a portion of book writing is part of
my job!

 I would also like to express my gratitude to Pankaj Mittal, CTO
and SVP, Impetus, for extending his whole-hearted support for
research and development (R&D) and enabling folks like me to work
on R&D full time. Kudos to him, that Impetus is able to have an R&D
team without billability and revenue pressures. This has really freed
me up and helped me to focus on R&D. Writing a book while work-
ing in the IT industry can be an arduous job. Thanks to Pankaj for
enabling this and similar activities.

 Praveen Kankariya, CEO of Impetus, has also been a source of
inspiration and guidance. Thanks, Praveen, for the support!

 I also wish to thank Dr. Nitin Agarwal, AVP and head, Data Sci-
ences Practice group at Impetus. Nitin has helped to shape some of
my thinking especially after our discussions on realization/implemen-
tation of machine learning algorithms. He has been a person I look up
to and an inspiration to excel in life. Nitin, being a former professor
at the Indian Institute of Management (IIM) Indore, exemplifies my
high opinion of academicians in general!

 This book would not have taken shape without Pranay Tonpay,
Senior Architect at Impetus, who leads the real-time analytics stream
in my R&D team. He has been instrumental in helping realize the

xiv BIG DATA ANALYTICS BEYOND HADOOP

ideas in this book including some of the machine learning algorithms
over Spark and Storm. He has been my go-to man. Special thanks to
Pranay.

 Jayati Tiwari, Senior Software Engineer, Impetus, has also con-
tributed some of the machine learning algorithms over Spark and
Storm. She has a very good understanding of Storm—in fact, she is
considered the Storm expert in the organization. She has also devel-
oped an inclination to understand machine learning and Spark. It has
been a pleasure having her on the team. Thanks, Jayati!

 Sai Sagar, Software Engineer at Impetus, has also been instru-
mental in implementing machine learning algorithms over GraphLab.
Thanks, Sagar, nice to have you on the team!

 Ankit Sharma, formerly data scientist at Impetus, now a Research
Engineer at Snapdeal, wrote a small section on Logistic Regression
(LR) which was the basis of the LR explained in Chapter 3 of this
book. Thanks, Ankit, for that and some of our nice discussions on
machine learning!

 I would also like to thank editor Jeanne Levine, Lori Lyons and
other staff of Pearson, who have been helpful in getting the book into
its final shape from the crude form I gave them! Thanks also to Pear-
son, the publishing house who has brought out this book.

 I would like to thank Gurvinder Arora, our technical writer, for
having reviewed the various chapters of the book.

 I would like to take this opportunity to thank my doctoral guide
Professor D. Janakiram of the Indian Institute of Technology (IIT)
Madras, who has inspired me to take up a research career in my for-
mative years. I owe a lot to him—he has shaped my technical thinking,
moral values, and been a source of inspiration throughout my profes-
sional life. In fact, the very idea of writing a book was inspired by his
recently released book Building Large Scale Software Systems with
Tata McGraw-Hill publishers. Not only Prof. DJ, I also wish to thank
all my teachers, starting from my high school teachers at Sankara,

 ACKNOWLEDGMENTS xv

teachers at Sri Venkateshwara College of Engineering (SVCE), and
all the professors at IIT Madras—they have molded me into what I
am today.

 I also wish to express my gratitude to Joydeb Mukherjee, formerly
senior data scientist with Impetus and currently Senior Technical
Specialist at MacAfee. Joydeb reviewed the Introduction chapter of
the book and has also been a source of sound-boarding for my ideas
when we were working together. This helped establish my beyond-
Hadoop ideas firmly. He has also pointed out some of the good work
in this field, including the work by Langford et al.

 I would like to thank Dr. Edd Dumbill, formerly of O’Reilly and
now VP at Silicon Valley Data Science—he is the editor of the Big
Data journal, where my article was published. He has also been kind
enough to review the book. He was also the organizer of the Strata
conference in California in February 2013 when I gave a talk about
some of the beyond-Hadoop concepts. That talk essentially set the
stage for this book. I also take this opportunity to thank the Strata
organizers for accepting some of my talk proposals.

 I also wish to thank Dr. Paco Nathan for reviewing the book and
writing up a foreword for it. His comments have been very inspiring,
as has his career! He is one of the folks I look up to. Thanks, Paco!

 My other team members have also been empathetic—Pranav
Ganguly, the Senior Architect at Impetus, has taken quite a bit of load
off me and taken care of the big data governance thread smoothly.
It is a pleasure to have him and Nishant Garg on the team. I wish to
thank all my team members.

 Without a strong family backing, it would have been difficult, if
not impossible, to write the book. My wife Vidya played a major role
in ensuring the home is peaceful and happy. She has sacrificed signifi-
cant time that we could have otherwise spent together to enable me
to focus on writing the book. My kids Prahaladh and Purvajaa have
been mature enough to let me do this work, too. Thanks to all three

xvi BIG DATA ANALYTICS BEYOND HADOOP

of them for making a sweet home. I also wish to thank my parents for
their upbringing and inculcating morality early in my life.

 Finally, as is essential, I thank God for giving me everything. I am
ever grateful to the almighty for taking care of me.

 About the Author

 Vijay Srinivas Agneeswaran, Ph.D., has a Bachelor’s degree
in Computer Science & Engineering from SVCE, Madras University
(1998), an MS (By Research) from IIT Madras in 2001, and a PhD
from IIT Madras (2008). He was a post-doctoral research fellow in the
Distributed Information Systems Laboratory (LSIR), Swiss Federal
Institute of Technology, Lausanne (EPFL) for a year. He has spent
the last seven years with Oracle, Cognizant, and Impetus, contribut-
ing significantly to Industrial R&D in the big data and cloud areas. He
is currently Director of Big Data Labs at Impetus. The R&D group
provides thought leadership through patents, publications, invited
talks at conferences, and next generation product innovations. The
main focus areas for his R&D include big data governance, batch and
real-time analytics, as well as paradigms for implementing machine
learning algorithms for big data. He is a professional member of
the Association of Computing Machinery (ACM) and the Institute
of Electrical and Electronics Engineers (IEEE) for the last eight+
years and was elevated to Senior Member of the IEEE in December
2012. He has filed patents with U.S., European, and Indian patent
offices (with two issued U.S. patents). He has published in leading
journals and conferences, including IEEE transactions. He has been
an invited speaker in several national and international conferences
such as O’Reilly’s Strata Big-Data conference series. His recent publi-
cations have appeared in the Big Data journal of Liebertpub. He lives
in Bangalore with his wife, son, and daughter, and enjoys research-
ing ancient Indian, Egyptian, Babylonian, and Greek culture and
philosophy.

This page intentionally left blank

 1

 1
 Introduction: Why Look

Beyond Hadoop Map-Reduce?

 Perhaps you are a video service provider and would like to opti-
mize the end user experience by choosing the appropriate content
distribution network based on dynamic network conditions. Or you
are a government regulatory body that needs to classify Internet pages
into porn or non-porn in order to filter porn pages—which has to be
achieved at high throughput and in real-time. Or you are a telecom/
mobile service provider, or you work for one, and you are worried
about customer churn (churn refers to a customer leaving the pro-
vider and choosing a competitor, or new customers joining in leaving
competitors). How you wish you had known that the last customer
who was on the phone with your call center had tweeted with nega-
tive sentiments about you a day before. Or you are a retail storeowner
and you would love to have predictions about the customers’ buying
patterns after they enter the store so that you can run promotions on
your products and expect an increase in sales. Or you are a healthcare
insurance provider for whom it is imperative to compute the probabil-
ity that a customer is likely to be hospitalized in the next year so that
you can fix appropriate premiums. Or you are a Chief Technology
Officer (CTO) of a financial product company who wishes that you
could have real-time trading/predictive algorithms that can help your
bottom line. Or you work for an electronic manufacturing company
and you would like to predict failures and identify root causes during
test runs so that the subsequent real-runs are effective. Welcome to
the world of possibilities, thanks to big data analytics.

2 BIG DATA ANALYTICS BEYOND HADOOP

 Analytics has been around for a long time now—North Carolina
State University ran a project called “Statistical Analysis System (SAS)”
for agricultural research in the late 1960s that led to the formation of
the SAS Company. The only difference between the terms analysis
and analytics is that analytics is about analyzing data and convert-
ing it into actionable insights. The term Business Intelligence (BI) is
also used often to refer to analysis in a business environment, possibly
originating in a 1958 article by Peter Luhn (Luhn 1958). Lots of BI
applications were run over data warehouses, even quite recently. The
evolution of “big data” in contrast to the “analytics” term has been
quite recent, as explained next.

 The term big data seems to have been used first by John R.
Mashey, then chief scientist of Silicon Graphics Inc. (SGI), in a Use-
nix conference invited talk titled “Big Data and the Next Big Wave of
InfraStress,” the transcript of which is available at http://static.usenix.
org/event/usenix99/invited_talks/mashey.pdf . The term was also used
in a paper (Bryson et al. 1999) published in the Communications of
the Association for Computing Machinery (ACM). The report (Laney
2001) from the META group (now Gartner) was the first to iden-
tify the 3 Vs (volume, variety, and velocity) perspective of big data.
Google’s seminal paper on Map-Reduce (MR; Dean and Ghemawat
2004) was the trigger that led to lots of developments in the big data
space. Though the MR paradigm was known in the functional pro-
gramming literature, the paper provided scalable implementations of
the paradigm on a cluster of nodes. The paper, along with Apache
Hadoop, the open source implementation of the MR paradigm,
enabled end users to process large data sets on a cluster of nodes—a
usability paradigm shift. Hadoop, which comprises the MR imple-
mentation, along with the Hadoop Distributed File System (HDFS),
has now become the de facto standard for data processing, with a
lot of industrial game changers such as Disney, Sears, Walmart, and
AT&T having their own Hadoop cluster installations.

http://static.usenix.org/event/usenix99/invited_talks/mashey.pdf
http://static.usenix.org/event/usenix99/invited_talks/mashey.pdf

 CHAPTER 1 • INTRODUCTION: WHY LOOK BEYOND HADOOP MAP-REDUCE? 3

 Hadoop Suitability

 Hadoop is good for a number of use cases, including those in
which the data can be partitioned into independent chunks—the
embarrassingly parallel applications, as is widely known. Hindrances
to widespread adoption of Hadoop across Enterprises include the
following:

 • Lack of Object Database Connectivity (ODBC)—A lot of BI
tools are forced to build separate Hadoop connectors.

 • Hadoop’s lack of suitability for all types of applications:

 • If data splits are interrelated or computation needs to access
data across splits, this might involve joins and might not run
efficiently over Hadoop. For example, imagine that you have
a set of stocks and the set of values of those stocks at vari-
ous time points. It is required to compute correlations across
stocks—can you check when Apple falls? What is the prob-
ability of Samsung too falling the next day? The computation
cannot be split into independent chunks—you may have to
compute correlation between stocks in different chunks, if
the chunks carry different stocks. If the data is split along
the time line, you would still need to compute correlation
between stock prices at different points of time, which may
be in different chunks.

 • For iterative computations, Hadoop MR is not well-suited for
two reasons. One is the overhead of fetching data from HDFS
for each iteration (which can be amortized by a distributed
caching layer), and the other is the lack of long-lived MR jobs
in Hadoop. Typically, there is a termination condition check
that must be executed outside of the MR job, so as to deter-
mine whether the computation is complete. This implies
that new MR jobs need to be initialized for each iteration

4 BIG DATA ANALYTICS BEYOND HADOOP

in Hadoop—the overhead of initialization could overwhelm
computation for the iteration and could cause significant per-
formance hits.

 The other perspective of Hadoop suitability can be understood by
looking at the characterization of the computation paradigms required
for analytics on massive data sets, from the National Academies Press
(NRC 2013). They term the seven categories as seven “giants” in
contrast with the “dwarf” terminology that was used to characterize
fundamental computational tasks in the super-computing literature
(Asanovic et al. 2006). These are the seven “giants”:

 1. Basic statistics: This category involves basic statistical opera-
tions such as computing the mean, median, and variance, as
well as things like order statistics and counting. The operations
are typically O(N) for N points and are typically embarrassingly
parallel, so perfect for Hadoop.

 2. Linear algebraic computations: These computations involve
linear systems, eigenvalue problems, inverses from problems
such as linear regression, and Principal Component Analysis
(PCA). Linear regression is doable over Hadoop (Mahout has
the implementation), whereas PCA is not easy. Moreover, a
formulation of multivariate statistics in matrix form is difficult
to realize over Hadoop. Examples of this type include kernel
PCA and kernel regression.

 3. Generalized N-body problems: These are problems that
involve distances, kernels, or other kinds of similarity between
points or sets of points (tuples). Computational complexity is
typically O(N 2) or even O(N 3). The typical problems include
range searches, nearest neighbor search problems, and non-
linear dimension reduction methods. The simpler solutions of
N-body problems such as k-means clustering are solvable over
Hadoop, but not the complex ones such as kernel PCA, kernel

 CHAPTER 1 • INTRODUCTION: WHY LOOK BEYOND HADOOP MAP-REDUCE? 5

Support Vector Machines (SVM), and kernel discriminant
analysis.

 4. Graph theoretic computations: Problems that involve graph
as the data or that can be modeled graphically fall into this cat-
egory. The computations on graph data include centrality, com-
mute distances, and ranking. When the statistical model is a
graph, graph search is important, as are computing probabilities
which are operations known as inference. Some graph theoretic
computations that can be posed as linear algebra problems can
be solved over Hadoop, within the limitations specified under
giant 2. Euclidean graph problems are hard to realize over
Hadoop as they become generalized N-body problems. More-
over, major computational challenges arise when you are deal-
ing with large sparse graphs; partitioning them across a cluster
is hard.

 5. Optimizations: Optimization problems involve minimiz-
ing (convex) or maximizing (concave) a function that can be
referred to as an objective, a loss, a cost, or an energy func-
tion. These problems can be solved in various ways. Stochas-
tic approaches are amenable to be implemented in Hadoop.
(Mahout has an implementation of stochastic gradient descent.)
Linear or quadratic programming approaches are harder to
realize over Hadoop, because they involve complex iterations
and operations on large matrices, especially at high dimensions.
One approach to solve optimization problems has been shown
to be solvable on Hadoop, but by realizing a construct known
as All-Reduce (Agarwal et al. 2011). However, this approach
might not be fault-tolerant and might not be generalizable.
Conjugate gradient descent (CGD), due to its iterative nature,
is also hard to realize over Hadoop. The work of Stephen Boyd
and his colleagues from Stanford has precisely addressed this
giant. Their paper (Boyd et al. 2011) provides insights on how

6 BIG DATA ANALYTICS BEYOND HADOOP

to combine dual decomposition and augmented Lagrangian
into an optimization algorithm known as Alternating Direction
Method of Multipliers (ADMM). The ADMM has been real-
ized efficiently over Message Passing Interface (MPI), whereas
the Hadoop implementation would require several iterations
and might not be so efficient.

 6. Integrations: The mathematical operation of integration
of functions is important in big data analytics. They arise
in Bayesian inference as well as in random effects models.
Quadrature approaches that are sufficient for low-dimensional
integrals might be realizable on Hadoop, but not those for high-
dimensional integration which arise in Bayesian inference
approach for big data analytical problems. (Most recent appli-
cations of big data deal with high-dimensional data—this is cor-
roborated among others by Boyd et al. 2011.) For example, one
common approach for solving high-dimensional integrals is the
Markov Chain Monte Carlo (MCMC) (Andrieu 2003), which
is hard to realize over Hadoop. MCMC is iterative in nature
because the chain must converge to a stationary distribution,
which might happen after several iterations only.

 7. Alignment problems: The alignment problems are those
that involve matching between data objects or sets of objects.
They occur in various domains—image de-duplication, match-
ing catalogs from different instruments in astronomy, multiple
sequence alignments used in computational biology, and so
on. The simpler approaches in which the alignment problem
can be posed as a linear algebra problem can be realized over
Hadoop. But the other forms might be hard to realize over
Hadoop—when either dynamic programming is used or Hid-
den Markov Models (HMMs) are used. It must be noted that
dynamic programming needs iterations/recursions. The catalog
cross-matching problem can be posed as a generalized N-body
problem, and the discussion outlined earlier in point 3 applies.

 CHAPTER 1 • INTRODUCTION: WHY LOOK BEYOND HADOOP MAP-REDUCE? 7

 To summarize, giant 1 is perfect for Hadoop, and in all other
giants, simpler problems or smaller versions of the giants are doable
in Hadoop—in fact, we can call them dwarfs, Hadoopable problems/
algorithms! The limitations of Hadoop and its lack of suitability for
certain classes of applications have motivated some researchers to
come up with alternatives. Researchers at the University of Berkeley
have proposed “Spark” as one such alternative—in other words, Spark
could be seen as the next-generation data processing alternative to
Hadoop in the big data space. In the previous seven giants categoriza-
tion, Spark would be efficient for

 • Complex linear algebraic problems (giant 2)

 • Generalized N-body problems (giant 3), such as kernel SVMs
and kernel PCA

 • Certain optimization problems (giant 4), for example,
approaches involving CGD

 An effort has been made to apply Spark for another giant, namely,
graph theoretic computations in GraphX (Xin et al. 2013). It would
be an interesting area of further research to estimate the efficiency
of Spark for other classes of problems or other giants such as integra-
tions and alignment problems.

 The key idea distinguishing Spark is its in-memory computation,
allowing data to be cached in memory across iterations/interactions.
Initial performance studies have shown that Spark can be 100 times
faster than Hadoop for certain applications. This book explores Spark
as well as the other components of the Berkeley Data Analytics Stack
(BDAS), a data processing alternative to Hadoop, especially in the
realm of big data analytics that involves realizing machine learning
(ML) algorithms. When using the term big data analytics, I refer to
the capability to ask questions on large data sets and answer them
appropriately, possibly by using ML techniques as the foundation. I
will also discuss the alternatives to Spark in this space—systems such
as HaLoop and Twister.

8 BIG DATA ANALYTICS BEYOND HADOOP

 The other dimension for which the beyond-Hadoop thinking is
required is for real-time analytics. It can be inferred that Hadoop is
basically a batch processing system and is not well suited for real-time
computations. Consequently, if analytical algorithms are required to
be run in real time or near real time, Storm from Twitter has emerged
as an interesting alternative in this space, although there are other
promising contenders, including S4 from Yahoo and Akka from Type-
safe. Storm has matured faster and has more production use cases
than the others. Thus, I will discuss Storm in more detail in the later
chapters of this book—though I will also attempt a comparison with
the other alternatives for real-time analytics.

 The third dimension where beyond-Hadoop thinking is required
is when there are specific complex data structures that need special-
ized processing—a graph is one such example. Twitter, Facebook, and
LinkedIn, as well as a host of other social networking sites, have such
graphs. They need to perform operations on the graphs, for example,
searching for people you might know on LinkedIn or a graph search in
Facebook (Perry 2013). There have been some efforts to use Hadoop
for graph processing, such as Intel’s GraphBuilder. However, as out-
lined in the GraphBuilder paper (Jain et al. 2013), it is targeted at
construction and transformation and is useful for building the initial
graph from structured or unstructured data. GraphLab (Low et al.
2012) has emerged as an important alternative for processing graphs
efficiently. By processing, I mean running page ranking or other ML
algorithms on the graph. GraphBuilder can be used for construct-
ing the graph, which can then be fed into GraphLab for processing.
GraphLab is focused on giant 4, graph theoretic computations. The
use of GraphLab for any of the other giants is an interesting topic of
further research.

 The emerging focus of big data analytics is to make traditional
techniques, such as market basket analysis, scale, and work on large
data sets. This is reflected in the approach of SAS and other traditional

 CHAPTER 1 • INTRODUCTION: WHY LOOK BEYOND HADOOP MAP-REDUCE? 9

vendors to build Hadoop connectors. The other emerging approach
for analytics focuses on new algorithms or techniques from ML and
data mining for solving complex analytical problems, including those
in video and real-time analytics. My perspective is that Hadoop is just
one such paradigm, with a whole new set of others that are emerg-
ing, including Bulk Synchronous Parallel (BSP)-based paradigms and
graph processing paradigms, which are more suited to realize iterative
ML algorithms. The following discussion should help clarify the big
data analytics spectrum, especially from an ML realization perspec-
tive. This should help put in perspective some of the key aspects of
the book and establish the beyond-Hadoop thinking along the three
dimensions of real-time analytics, graph computations, and batch ana-
lytics that involve complex problems (giants 2 through 7).

 Big Data Analytics: Evolution of Machine
Learning Realizations

 I will explain the different paradigms available for implementing
ML algorithms, both from the literature and from the open source
community. First of all, here’s a view of the three generations of ML
tools available today:

 1. The traditional ML tools for ML and statistical analysis, includ-
ing SAS, SPSS from IBM, Weka, and the R language. These
allow deep analysis on smaller data sets—data sets that can fit
the memory of the node on which the tool runs.

 2. Second-generation ML tools such as Mahout, Pentaho, and
RapidMiner. These allow what I call a shallow analysis of big
data. Efforts to scale traditional tools over Hadoop, including
the work of Revolution Analytics (RHadoop) and SAS over
Hadoop, would fall into the second-generation category.

10 BIG DATA ANALYTICS BEYOND HADOOP

 3. The third-generation tools such as Spark, Twister, HaLoop,
Hama, and GraphLab. These facilitate deeper analysis of big
data. Recent efforts by traditional vendors such as SAS in-
memory analytics also fall into this category.

 First-Generation ML Tools/Paradigms

 The first-generation ML tools can facilitate deep analytics because
they have a wide set of ML algorithms. However, not all of them can
work on large data sets—like terabytes or petabytes of data—due to
scalability limitations (limited by the nondistributed nature of the
tool). In other words, they are vertically scalable (you can increase
the processing power of the node on which the tool runs), but not
horizontally scalable (not all of them can run on a cluster). The first-
generation tool vendors are addressing those limitations by building
Hadoop connectors as well as providing clustering options—meaning
that the vendors have made efforts to reengineer the tools such as R
and SAS to scale horizontally. This would come under the second-/
third-generation tools and is covered subsequently.

 Second-Generation ML Tools/Paradigms

 The second-generation tools (we can now term the traditional ML
tools such as SAS as first-generation tools) such as Mahout (http://
mahout.apache.org), Rapidminer, and Pentaho provide the capabil-
ity to scale to large data sets by implementing the algorithms over
Hadoop, the open source MR implementation. These tools are matur-
ing fast and are open source (especially Mahout). Mahout has a set of
algorithms for clustering and classification, as well as a very good rec-
ommendation algorithm (Konstan and Riedl 2012). Mahout can thus
be said to work on big data, with a number of production use cases,
mainly for the recommendation system. I have also used Mahout
in a production system for realizing recommendation algorithms

http://mahout.apache.org
http://mahout.apache.org

 CHAPTER 1 • INTRODUCTION: WHY LOOK BEYOND HADOOP MAP-REDUCE? 11

in financial domain and found it to be scalable, though not without
issues. (I had to tweak the source significantly.) One observation
about Mahout is that it implements only a smaller subset of ML algo-
rithms over Hadoop—only 25 algorithms are of production quality,
with only 8 or 9 usable over Hadoop, meaning scalable over large data
sets. These include the linear regression, linear SVM, the K-means
clustering, and so forth. It does provide a fast sequential implementa-
tion of the logistic regression, with parallelized training. However, as
several others have also noted (see Quora.com, for instance), it does
not have implementations of nonlinear SVMs or multivariate logistic
regression (discrete choice model, as it is otherwise known).

 Overall, this book is not intended for Mahout bashing. However,
my point is that it is quite hard to implement certain ML algorithms
including the kernel SVM and CGD (note that Mahout has an imple-
mentation of stochastic gradient descent) over Hadoop. This has been
pointed out by several others as well—for instance, see the paper by
Professor Srirama (Srirama et al. 2012). This paper makes detailed
comparisons between Hadoop and Twister MR (Ekanayake et al.
2010) with regard to iterative algorithms such as CGD and shows
that the overheads can be significant for Hadoop. What do I mean by
iterative? A set of entities that perform a certain computation, wait for
results from neighbors or other entities, and start the next iteration.
The CGD is a perfect example of iterative ML algorithm—each CGD
can be broken down into daxpy , ddot , and matmul as the primitives.
I will explain these three primitives: daxpy is an operation that takes
a vector x , multiplies it by a constant k , and adds another vector y
to it; ddot computes the dot product of two vectors x and y ; matmul
multiplies a matrix by a vector and produces a vector output. This
means 1 MR per primitive, leading to 6 MRs per iteration and even-
tually 100s of MRs per CG computation, as well as a few gigabytes
(GB)s of communication even for small matrices. In essence, the
setup cost per iteration (which includes reading from HDFS into

12 BIG DATA ANALYTICS BEYOND HADOOP

memory) overwhelms the computation for that iteration, leading to
performance degradation in Hadoop MR. In contrast, Twister distin-
guishes between static and variable data, allowing data to be in mem-
ory across MR iterations, as well as a combine phase for collecting all
 reduce phase outputs and, hence, performs significantly better.

 The other second-generation tools are the traditional tools that
have been scaled to work over Hadoop. The choices in this space
include the work done by Revolution Analytics, among others, to
scale R over Hadoop and the work to implement a scalable runtime
over Hadoop for R programs (Venkataraman et al. 2012). The SAS
in-memory analytics, part of the High Performance Analytics toolkit
from SAS, is another attempt at scaling a traditional tool by using a
Hadoop cluster. However, the recently released version works over
Greenplum/Teradata in addition to Hadoop—this could then be
seen as a third-generation approach. The other interesting work is
by a small start-up known as Concurrent Systems, which is provid-
ing a Predictive Modeling Markup Language (PMML) runtime over
Hadoop. PMML is like the eXtensible Markup Language (XML) of
modeling, allowing models to be saved in descriptive language files.
Traditional tools such as R and SAS allow the models to be saved as
PMML files. The runtime over Hadoop would allow these model files
to be scaled over a Hadoop cluster, so this also falls in our second-
generation tools/paradigms.

 Third-Generation ML Tools/Paradigms

 The limitations of Hadoop and its lack of suitability for certain
classes of applications have motivated some researchers to come up
with alternatives. The efforts in the third generation have been to look
beyond Hadoop for analytics along different dimensions. I discuss the
approaches along the three dimensions, namely, iterative ML algo-
rithms, real-time analytics, and graph processing.

 CHAPTER 1 • INTRODUCTION: WHY LOOK BEYOND HADOOP MAP-REDUCE? 13

 Iterative Machine Learning Algorithms

 Researchers at the University of Berkeley have proposed “Spark”
(Zaharia et al. 2010) as one such alternative—in other words, Spark
could be seen as the next-generation data processing alternative to
Hadoop in the big data space. The key idea distinguishing Spark is
its in-memory computation, allowing data to be cached in memory
across iterations/interactions. The main motivation for Spark was that
the commonly used MR paradigm, while being suitable for some
applications that can be expressed as acyclic data flows, was not suit-
able for other applications, such as those that need to reuse working
sets across iterations. So they proposed a new paradigm for cluster
computing that can provide similar guarantees or fault tolerance (FT)
as MR but would also be suitable for iterative and interactive applica-
tions. The Berkeley researchers have proposed BDAS as a collection
of technologies that help in running data analytics tasks across a clus-
ter of nodes. The lowest-level component of the BDAS is Mesos, the
cluster manager that helps in task allocation and resource manage-
ment tasks of the cluster. The second component is the Tachyon file
system built on top of Mesos. Tachyon provides a distributed file sys-
tem abstraction and provides interfaces for file operations across the
cluster. Spark, the computation paradigm, is realized over Tachyon
and Mesos in a specific embodiment, although it could be realized
without Tachyon and even without Mesos for clustering. Shark, which
is realized over Spark, provides a Structured Query Language (SQL)
abstraction over a cluster—similar to the abstraction Hive provides
over Hadoop. Zacharia et al. article explores Spark, which is the main
ingredient over which ML algorithms can be built.

 The HaLoop work (Bu et al. 2010) also extends Hadoop for
iterative ML algorithms—HaLoop not only provides a program-
ming abstraction for expressing iterative applications, but also uses
the notion of caching to share data across iterations and for fixpoint
verification (termination of iteration), thereby improving efficiency.

14 BIG DATA ANALYTICS BEYOND HADOOP

Twister (http://iterativemapreduce.org) is another effort similar to
HaLoop.

 Real-time Analytics

 The second dimension for beyond-Hadoop thinking comes from
real-time analytics. Twitter from Storm has emerged as the best con-
tender in this space. Storm is a scalable Complex Event Processing
(CEP) engine that enables complex computations on event streams in
real time. The components of a Storm cluster are

 • Spouts that read data from various sources. HDFS spout, Kafka
spout, and Transmission Control Protocol (TCP) stream spout
are examples.

 • Bolts that process the data. They run the computations on the
streams. ML algorithms on the streams typically run here.

 • Topology. This is an application-specific wiring together of
spouts and bolts—topology gets executed on a cluster of nodes.

 An architecture comprising a Kafka (a distributed queuing sys-
tem from LinkedIn) cluster as a high-speed data ingestor and a Storm
cluster for processing/analytics works well in practice, with a Kafka
spout reading data from the Kafka cluster at high speed. The Kafka
cluster stores up the events in the queue. This is necessary because
the Storm cluster is heavy in processing due to the ML involved. The
details of this architecture, as well as the steps needed to run ML
algorithms in a Storm cluster, are covered in subsequent chapters of
the book. Storm is also compared to the other contenders in real-time
computing, including S4 from Yahoo and Akka from Typesafe.

 Graph Processing Dimension

 The other important tool that has looked beyond Hadoop MR
comes from Google—the Pregel framework for realizing graph com-
putations (Malewicz et al. 2010). Computations in Pregel comprise a

http://iterativemapreduce.org

 CHAPTER 1 • INTRODUCTION: WHY LOOK BEYOND HADOOP MAP-REDUCE? 15

series of iterations, known as supersteps. Each vertex in the graph is
associated with a user-defined compute function; Pregel ensures at
each superstep that the user-defined compute function is invoked in
parallel on each edge. The vertices can send messages through the
edges and exchange values with other vertices. There is also the global
barrier—which moves forward after all compute functions are ter-
minated. Readers familiar with BSP can see why Pregel is a perfect
example of BSP—a set of entities computing user-defined functions
in parallel with global synchronization and able to exchange messages.

 Apache Hama (Seo et al. 2010) is the open source equiva-
lent of Pregel, being an implementation of the BSP. Hama realizes
BSP over the HDFS, as well as the Dryad engine from Micro-
soft. It might be that they do not want to be seen as being differ-
ent from the Hadoop community. But the important thing is that
BSP is an inherently well-suited paradigm for iterative computa-
tions, and Hama has parallel implementations of the CGD, which I
said is not easy to realize over Hadoop. It must be noted that the
BSP engine in Hama is realized over MPI, the father (and mother)
of parallel programming literature (www.mcs.anl.gov/research/
projects/mpi/). The other projects that are inspired by Pregel are
 Apache Giraph, Golden Orb, and Stanford GPS.

 GraphLab (Gonzalez et al. 2012) has emerged as a state-of-the-
art graph processing paradigm. GraphLab originated as an academic
project from the University of Washington and Carnegie Mellon Uni-
versity (CMU). GraphLab provides useful abstractions for process-
ing graphs across a cluster of nodes deterministically. PowerGraph,
the subsequent version of GraphLab, makes it efficient to process
natural graphs or power law graphs—graphs that have a high number
of poorly connected vertices and a low number of highly connected
vertices. Performance evaluations on the Twitter graph for page-
ranking and triangle counting problems have verified the efficiency
of GraphLab compared to other approaches. The focus of this book is
mainly on Giraph, GraphLab, and related efforts.

http://www.mcs.anl.gov/research/projects/mpi/
http://www.mcs.anl.gov/research/projects/mpi/

16 BIG DATA ANALYTICS BEYOND HADOOP

 Table 1.1 carries a comparison of the various paradigms across
different nonfunctional features such as scalability, FT, and the algo-
rithms that have been implemented. It can be inferred that although
the traditional tools have worked on only a single node and might not
scale horizontally and might also have single points of failure, recent
reengineering efforts have made them move across generations. The
other point to be noted is that most of the graph processing para-
digms are not fault-tolerant, whereas Spark and HaLoop are among
the third-generation tools that provide FT.

 Table 1.1 Three Generations of Machine Learning Realizations

 Generation
 First
Generation Second Generation Third Generation

 Examples Statistical
Analysis
System (SAS),
R, Weka, SPSS
in native form

 Mahout, Pentaho,
Revolution R,
SAS In-memory
Analytics (Hadoop),
concurrent systems

 Spark, HaLoop,
GraphLab, Pregel, SAS
In-memory Analytics
(Greenplum/Teradata),
Giraph, Golden ORB,
Stanford GPS, ML over
Storm

 Scalability Vertical Horizontal (over
Hadoop)

 Horizontal (beyond
Hadoop)

 Algorithms
Available

 Huge
collection of
algorithms

 Small subset—
sequential logistic
regression, linear
SVMs, Stochastic
Gradient Descent,
K-means clustering,
Random Forests, etc.

 Much wider—including
CGD, Alternating
Least Squares (ALS),
collaborative filtering,
kernel SVM, belief
propagation, matrix
factorization, Gibbs
sampling, etc.

 Algorithms
Not Available

 Practically
nothing

 Vast number—
Kernel SVMs,
Multivariate
Logistic Regression,
Conjugate Gradient
Descent (CGD),
ALS, etc.

 Multivariate Logistic
Regression in general
form, K-means
clustering, etc.; work
in progress to expand
the set of algorithms
available

 Fault
Tolerance
(FT)

 Single point of
failure

 Most tools are
FT, because they
are built on top of
Hadoop

 FT: HaLoop, Spark

 Not FT: Pregel,
GraphLab, Giraph

 CHAPTER 1 • INTRODUCTION: WHY LOOK BEYOND HADOOP MAP-REDUCE? 17

 Closing Remarks

 This chapter has set the tone for the book by discussing the limita-
tions of Hadoop along the lines of the seven giants. It has also brought
out the three dimensions along which thinking beyond Hadoop is
necessary:

 1. Real-time analytics: Storm and Spark streaming are the choices.

 2. Analytics involving iterative ML: Spark is the technology of
choice.

 3. Specialized data structures and processing requirements for
these: GraphLab is an important paradigm to process large
graphs.

 These are elaborated in the subsequent chapters of this book.
Happy reading!

 References
 Agarwal, Alekh, Olivier Chapelle, Miroslav Dudík, and John Lang-

ford. 2011. “A Reliable Effective Terascale Linear Learning Sys-
tem.” CoRR abs/1110.4198.

 Andrieu, Christopher, N. de Freitas, A. Doucet, and M. I. Jordan.
2003. “An Introduction to MCMC for Machine Learning.” Machine
Learning 50(1-2):5-43.

 Asanovic, K., R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Wil-
liams, and K. A. Yelick. 2006. “The Landscape of Parallel Com-
puting Research: A View from Berkeley.” University of California,
Berkeley, Technical Report No. UCB/EECS-2006-183. Available
at www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.
html . Last accessed September 11, 2013.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

18 BIG DATA ANALYTICS BEYOND HADOOP

 Boyd, Stephen, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan
Eckstein. 2011. “Distributed Optimization and Statistical Learning
via the Alternating Direction Method of Multipliers.” Foundation
and Trends in Machine Learning 3(1)(January):1-122.

 Bryson, Steve, David Kenwright, Michael Cox, David Ellsworth, and
Robert Haimes. 1999. “Visually Exploring Gigabyte Data Sets in
Real Time.” Communications of the ACM 42(8)(August):82-90.

 Bu, Yingyi, Bill Howe, Magdalena Balazinska, and Michael D.
Ernst. 2010. “HaLoop: Efficient Iterative Data Processing on
Large Clusters.” In Proceedings of the VLDB Endowment 3(1-2)
(September):285-296.

 Dean, Jeffrey, and Sanjay Ghemawat. 2008. “MapReduce: Simplified
Data Processing on Large Clusters.” In Proceedings of the 6th Con-
ference on Symposium on Operating Systems Design and Imple-
mentation (OSDI ‘04) . USENIX Association, Berkeley, CA, USA,
(6):10-10.

 Ekanayake, Jaliya, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-
Hee Bae, Judy Qiu, and Geoffrey Fox. 2010. “Twister: A Runtime
for Iterative MapReduce.” In Proceedings of the 19th ACM Inter-
national Symposium on High-Performance Distributed Comput-
ing . June 21-25, Chicago, Illinois. Available at http://dl.acm.org/
citation.cfm?id=1851593 .

 Gonzalez, Joseph E., Yucheng Low, Haijie Gu, Danny Bickson,
and Carlos Guestrin. 2012. “PowerGraph: Distributed Graph-
Parallel Computation on Natural Graphs.” In Proceedings of the 10th
USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI ‘12) .

 Jain, Nilesh, Guangdeng Liao, and Theodore L. Willke. 2013.
“GraphBuilder: Scalable Graph ETL Framework.” In First Inter-
national Workshop on Graph Data Management Experiences and

http://dl.acm.org/citation.cfm?id=1851593
http://dl.acm.org/citation.cfm?id=1851593

 CHAPTER 1 • INTRODUCTION: WHY LOOK BEYOND HADOOP MAP-REDUCE? 19

Systems (GRADES ‘13) . ACM, New York, NY, USA, (4):6 pages.
DOI=10.1145/2484425.2484429.

 Konstan, Joseph A., and John Riedl. 2012. “Deconstructing Recom-
mender Systems.” IEEE Spectrum .

 Laney, Douglas. 2001. “3D Data Management: Controlling Data Vol-
ume, Velocity, and Variety.” Gartner Inc. Retrieved February 6,
2001. Last accessed September 11, 2013. Available at http://blogs.
gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Manage-
ment-Controlling-Data-Volume-Velocity-and-Variety.pdf .

 Low, Yucheng, Danny Bickson, Joseph Gonzalez, Carlos Guestrin,
Aapo Kyrola, and Joseph M. Hellerstein. 2012. “Distributed
GraphLab: A Framework for Machine Learning and Data Min-
ing in the Cloud.” In Proceedings of the VLDB Endowment 5(8)
(April):716-727.

 Luhn, H. P. 1958. “A Business Intelligence System.” IBM Journal
2(4):314. doi:10.1147/rd.24.0314.

 Malewicz, Grzegorz, Matthew H. Austern, Aart J. C. Bik, James C.
Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010.
“Pregel: A System for Large-scale Graph Processing.” In Proceed-
ings of the 2010 ACM SIGMOD International Conference on
Management of Data (SIGMOD ‘10) . ACM, New York, NY, USA,
135-146.

 [NRC] National Research Council. 2013. “Frontiers in Massive Data
Analysis.” Washington, DC: The National Academies Press.

 Perry, Tekla S. 2013. “The Making of Facebook Graph Search.” IEEE
Spectrum. Available at http://spectrum.ieee.org/telecom/internet/
the-making-of-facebooks-graph-search .

 Seo, Sangwon, Edward J. Yoon, Jaehong Kim, Seongwook Jin, Jin-Soo
Kim, and Seungryoul Maeng. 2010. “HAMA: An Efficient Matrix
Computation with the MapReduce Framework.” In Proceedings of

http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://spectrum.ieee.org/telecom/internet/the-making-of-facebooks-graph-search
http://spectrum.ieee.org/telecom/internet/the-making-of-facebooks-graph-search

20 BIG DATA ANALYTICS BEYOND HADOOP

the 2010 IEEE Second International Conference on Cloud Com-
puting Technology and Science (CLOUDCOM ‘10) . IEEE Com-
puter Society, Washington, DC, USA, 721-726.

 Srirama, Satish Narayana, Pelle Jakovits, and Eero Vainikko. 2012.
“Adapting Scientific Computing Problems to Clouds Using
MapReduce.” Future Generation Computer System 28(1)
(January):184-192.

 Venkataraman, Shivaram, Indrajit Roy, Alvin AuYoung, and Robert S.
Schreiber. 2012. “Using R for Iterative and Incremental Process-
ing.” In Proceedings of the 4th USENIX Conference on Hot Topics
in Cloud Computing (HotCloud ‘12) . USENIX Association, Berke-
ley, CA, USA, 11.

 Xin, Reynold S., Joseph E. Gonzalez, Michael J. Franklin, and Ion
Stoica. 2013. “GraphX: A Resilient Distributed Graph System on
Spark.” In First International Workshop on Graph Data Manage-
ment Experiences and Systems (GRADES ‘13) . ACM, New York,
NY, USA, (2):6 pages.

 Zaharia, Matei, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. 2010. “Spark: Cluster Computing with
Working Sets.” In Proceedings of the 2nd USENIX Conference on
Hot Topics in Cloud Computing (HotCloud ‘10) . USENIX Associa-
tion, Berkeley, CA, USA, 10.

This page intentionally left blank

 Index

A
 actions on Spark RDDs, 33
 Akka system, 123
 alignment problems, 6
 all grouping (Storm), 100
 AM (Application Master), 163 - 165
 analytics

 defined, 1 - 2
 future of, 166 - 169
 history of term, 1 - 2

 Apache Hama, 136
 application layer in BDAS, 29 - 31
 Application Master (AM), 163 - 165
 Apply phase (GraphLab vertex

program), 151
 architecture

 of BDAS, 26 - 31
 of Hadoop YARN, 165
 of Mesos, 48
 of MLbase, 90 - 91

 B
 basic statistics computations, 4
 batch learning, online learning

versus, 66
 BDAS (Berkeley Data Analytics

Stack), 13, 21
 design and architecture, 26 - 31
 Mesos

 architecture, 48
 cluster resource sharing, 46 - 47

 209

 fault tolerance, 52
 isolation, 50 - 52
 resource allocation, 49 - 50

 motivation for developing, 21 - 23
 Shark, 42 - 46

 columnar memory store, 44 - 45
 distributed data loading, 45
 full partition-wise joins, 45
 ML (machine learning)

support, 46
 partition pruning, 46
 Spark extensions for, 43 - 44

 Spark
 data processing in, 31 - 32
 DSM (Distributed Shared

Memory) systems versus,
 38 - 40

 expressibility of RDDs, 40 - 41
 implementation, 36 - 38
 RDDs (resilient distributed

datasets), 33 - 36
 similar systems, 41 - 42

 BI (business intelligence), history of
term, 1 - 2

 big data
 future of, 166 - 169
 history of term, 2

 binary LR (logistic regression), 67 - 69
 BLinkDB, 29 - 30
 bolts in Storm, 95 - 96

 real-time computing example, 97 - 99
 BSP (Bulk Synchronous Parallel)

 applications for, 132 - 134
 expressibility through RDDs, 40

210 INDEX

 Pregel as, 14 - 15 , 130 - 132
 limitations, 138 - 139
 open source implementations,

 134 - 137
 bulk iterations, 133
 business intelligence (BI), history

of term, 1 - 2

 C
 CGD, as iterative ML algorithm,

 11 - 12
 chromatic engine (GraphLab), 142
 classification, regression versus, 66
 cluster resource sharing, 25 - 26 , 46 - 47
 clusters in Storm, 96 - 97
code sketches, 171

JPMMLLinearRegInSpark.java, 182
NaiveBayesHandler.java, 171
NaiveBayesPMMLBolt.java, 178
sgd.cpp, 191
Simple_pagerank.cpp, 186

 columnar memory store in
Shark, 44 - 45

 complex data structure processing, 8
 complex decision planes in SVM,

74 - 76
 computation paradigms, list of, 4 - 6
 consistency models (GraphLab),

 140 - 141
 consumers in PMML, 85 - 86
 continuous transformations in

PMML, 82
 Conviva, 30

 D
 data dictionary in PMML, 81 - 82
 data management layer in

BDAS, 28 - 29
 data processing

 in BDAS, 29
 in Spark, 31 - 32

 data splits computations, 3

 data transformations. See
transformations

 daxpy primitive, 11
 ddot primitive, 11
 decision trees example (machine

learning), 62 - 64
 deep learning, 167
 dependencies between Spark

RDDs, 36
 design of BDAS, 26 - 31
 design patterns in Storm

 distributed remote procedure calls
(DRPCs), 102 - 106

 Trident, 106 - 107
 direct grouping (Storm), 100
 discrete normalization in PMML, 83
 discretization in PMML, 83
 disk-based single-node analytics,

 168 - 169
 distributed data loading in Shark, 45
 distributed remote procedure calls

(DRPCs), 102 - 106
 Distributed Shared Memory (DSM)

systems, Spark versus, 38 - 40
 distributed SQL systems, Shark as,

 42 - 46
 distributed version of GraphLab,

 141 - 143
 Domain Specific Language (DSL),

 166 - 167
 Dominant Resource Fairness

(DRF), 49
 Dremel, 123
 Drill, 123
 DRPCs (distributed remote

procedure calls), 102 - 106
 DryadLINQ, 40
 DSL (Domain Specific Language),

 166 - 167
 DSM (Distributed Shared Memory)

systems, Spark versus, 38 - 40
 D-Streams, 124 - 126

 INDEX 211

 E
 estimators in logistic regression (LR),

 69 - 70
 expressibility of RDDs (resilient

distributed datasets), 40 - 41

 F
 Facebook graph search, 129
 fairness algorithms, 49 - 50
 fault tolerance in Mesos, 52
 field grouping (Storm), 99
 first-generation ML (machine

learning) tools, 10
 comparison with subsequent

generations, 16
 Forge, 166 - 167
 framework schedulers, 28 , 46 - 47
 frameworks over Hadoop YARN,

 165 - 166
 full partition-wise joins in Shark, 45
 future of big data analytics, 166 - 169

 G
 GAS (Gather, Apply, Scatter),

 143 - 144 , 149 - 153
 Gather phase (GraphLab vertex

program), 151
 GBASE, 132
 generalized N-body problems, 4
 Giraph, 134 - 136 , 166
 global grouping (Storm), 100
 GoldenORB, 136
 GPS (Graph Processing System), 137
 graph computations, 5 , 8 , 14 - 15 ,

 129 - 130
 applications for, 132 - 134
 GraphLab

 distributed version, 141 - 143
 multicore version, 139 - 141
 page rank algorithm example,

 147 - 153 , 186 - 191

 PowerGraph, 143 - 147
 stochastic gradient descent

example, 153 - 156 , 191 - 207
 vertex program, 149 - 153

 Hadoop YARN support, 166
 with Pregel, 130 - 132

 limitations, 138 - 139
 open source implementations,

 134 - 137
 Graph Processing System (GPS), 137
 GraphChi, 168 - 169
 GraphLab, 15, 138

 distributed version, 141 - 143
 Hadoop YARN support, 166
 multicore version, 139 - 141
 page rank algorithm example,

 147 - 153 , 186 - 191
 PowerGraph, 143 - 147
 stochastic gradient descent example,

 153 - 156 , 191 - 207
 vertex program, 149 - 153

 GraphX, 166
 grouping Storm streams, 99 - 100

 H
 Hadoop

 in history of big data analytics, 2
 suitability and limitations, 3 - 9 ,

 21 - 23 , 162 - 163
 Hadoop Distributed File System

(HDFS), 22
Hadoop YARN, 161 - 162

 comparison with Mesos, 28
 frameworks for, 165 - 166
 motivation for developing, 162 - 163
 as resource scheduler, 163 - 165

 HaLoop, 13 - 14 , 41 - 42
 Hama, 15
 header information in PMML, 81
 history of big data analytics

terminology, 1 - 2
 HMMs (Hidden Markov Models), 168

212 INDEX

 I
 incremental iterations, 133-134
 inductive approach, transductive

approach versus, 65
 integration problems, 6
 interactive queries, 23 - 25
 Internet of Things (IoT), 169
 Internet traffic filtering example

(real-time analytics with Storm),
 121 - 122

 interrelated data splits
computations, 3

 IoT (Internet of Things), 169
 isolation in Mesos, 50 - 52
 iterative computations, 3 - 4
 iterative ML algorithms, 13 - 14

 expressibility through RDDs, 41
 Hadoop YARN support, 166
 with Tez, 166

 K
 Kafka clusters, 118 - 120
Kafka spout, 14, 97-98

 L
 limitations

 of Hadoop, 3 - 9 , 21 - 23 , 162 - 163
 of Pregel, 138 - 139
 of Spark, 7

 linear algebraic computations, 4
 linear regression support in PMML,

 88 - 89 , 182 - 186
 local grouping (Storm), 100
 locking engine (GraphLab), 143
 logistic regression (LR), 67 - 70

 binary LR, 67 - 69
 estimators, 69 - 70
 multinomial LR, 70
 in Spark, 70 - 73
 in Storm, 107 - 110

 M
 machine learning (ML) tools. See ML

(machine learning) tools
 machine-to-machine (M2M) data,

 116 - 117
 Mahout, 10 - 11 , 107 - 108
 manufacturing log classification

example (real-time analytics with
Storm), 116 - 121

 Map-Reduce (MR)
 expressibility through RDDs, 40
 parallel databases versus, 24 - 25

 Markov Chain Monte Carlo
(MCMC), 168

 mathematics of SVM (support vector
machine), 76 - 78

 matmul primitive, 11
 MCMC (Markov Chain Monte

Carlo), 168
 Mesos, 13

 architecture, 48
 cluster resource sharing, 46 - 47
 comparison with Hadoop YARN, 28
 fault tolerance, 52
 isolation, 50 - 52
 motivation for developing, 25 - 26
 resource allocation, 49 - 50

 message processing guarantees in
Storm, 100 - 102

 mining schema in PMML, 84 - 85
 ML (machine learning), 9 - 16 , 61

 comparison of generations, 16
 decision trees example, 62 - 64
 first-generation tools, 10
 Hadoop YARN support, 166
 logistic regression (LR). See logistic

regression (LR)
 MLbase, 90 - 91
 PMML. See PMML (Predictive

Modeling Markup Language)
 real-time analytics . See also Storm

 alternatives to Storm, 122 - 123
 D-Streams, 124 - 126

 INDEX 213

 Internet traffic filtering
example, 121 - 122

 manufacturing log classification
example, 116 - 121

 Storm example, 97 - 99
 second-generation tools, 10 - 12
 support in Shark, 46
 SVM. See SVM (support vector

machine)
 taxonomy of, 65 - 66
 with Tez, 166
 third-generation tools, 12 - 16

 graph computations, 14 - 15
 iterative ML algorithms, 13 - 14
 real-time analytics, 14

 uses for, 61 - 62
 MLbase, 90 - 91
 model definition in PMML, 84
 monolithic schedulers, 28
 MR (Map-Reduce)

 expressibility through RDDs, 40
 parallel databases versus, 23 - 25

 multicore version of GraphLab,
 139 - 141

 multinomial LR (logistic
regression), 70

 N
 Naive Bayes support in PMML

 in Spark, 87 - 88 , 171 - 182
 in Storm, 113 - 116

 Nectar, 42
 Neo4j, 129 - 130
 Nimbus, 28
 no grouping (Storm), 100
 Node Manager (NM), 164 - 165

 O
 Omega, 28
 online learning, batch learning

versus, 66
 Ooyala, 30 - 31

 open source implementations of
Pregel, 134 - 137

 operators, D-Streams, 125 - 126
 optimization problems, 5
 OS Level virtualization, 51
 outputs in PMML, 85

 P
 page rank algorithm example

(GraphLab), 147 - 153 , 186 - 191
 parallel databases, 23 - 25
ParsePoint, 71-72
 partial DAG execution, 43 - 44
 partition pruning in Shark, 46
 partitioning with PowerGraph,

 145 - 147
 Pegasus, 132 - 133
 Phoebus, 136
 Piccolo, 138
 PMML (Predictive Modeling Markup

Language), 12
 linear regression support,

 88 - 89 , 182 - 186
 Naive Bayes support

 in Spark, 87 - 88 , 171 - 182
 in Storm, 113 - 116

 producers and consumers, 85 - 86
 structure of, 80 - 85
 support in Spark, 79 - 80

 PowerGraph, 15 , 143 - 147
 Pregel framework, 14 - 15 , 130 - 132

 limitations, 138 - 139
 open source implementations,

 134 - 137
 producers in PMML, 85 - 86

 Q
 quantum computing, 168

214 INDEX

 R
 R, scaling over Hadoop, 12
 random forest (RF) example (machine

learning), 62 - 64
 RDDs (resilient distributed

datasets), 33 - 36
 expressibility of, 40 - 41
 implementation, 36 - 38

 real-time analytics, 7 - 8 , 14 . See also
Storm

 alternatives to Storm, 122 - 123
 D-Streams, 124 - 126
 Internet traffic filtering example,

 121 - 122
 manufacturing log classification

example, 116 - 121
 Storm example, 97 - 99

 recommender systems, 61
 regression

 classification versus, 66
 linear regression support, in PMML,

 88 - 89 , 182 - 186
 logistic regression (LR), 67 - 70

 binary LR, 67 - 69
 estimators, 69 - 70
 multinomial LR, 70
 in Spark, 70 - 73
 in Storm, 107 - 110

 reinforcement learning, ML (machine
learning) as, 66

 Remote Procedure Calls (RPCs),
 102 - 104

 resilient distributed datasets
(RDDs), 33 - 36

 expressibility of, 40 - 41
 implementation, 36 - 38

 resource allocation in Mesos, 49 - 50
 resource management layer in BDAS,

 26 - 28
 Resource Manager (RM), 163 - 165
 resource scheduler, Hadoop YARN

as, 163 - 165
 RF (random forest) example (machine

learning), 62 - 64

 RM (Resource Manager), 163 - 165
 RPCs (Remote Procedure Calls),

 102 - 104

 S
 S4 system, 123
 Scala, 23
 second-generation ML (machine

learning) tools, 10 - 12
 comparison with other

generations, 16
 Shark, 13 , 42 - 46

 columnar memory store, 44 - 45
 distributed data loading, 45
 full partition-wise joins, 45
 ML (machine learning) support, 46
 motivation for developing, 23 - 25
 partition pruning, 46
 Spark extensions for, 43 - 44

 shuffle grouping (Storm), 99
 Spark

 data processing in, 31 - 32
 DSM (Distributed Shared Memory)

systems versus, 38 - 40
 expressibility of RDDs, 40 - 41
 extensions for Shark, 43 - 44
 Hadoop YARN support, 166
 implementation, 36 - 38
 as iterative ML algorithm, 13
 logistic regression (LR) in, 70 - 73
 MLbase, 90 - 91
 motivation for developing, 23
 PMML support, 79 - 80

 for linear regression, 88 - 89 ,
 182 - 186

 for Naive Bayes, 87 - 88 , 171 - 182
 RDDs (resilient distributed

datasets), 33 - 36
 similar systems, 41 - 42
 streaming, 124 - 126
 suitability and limitations, 7
 SVM (support vector machine) in,

 78 - 79

 INDEX 215

 split-data computations, 3
 spouts in Storm, 95 - 96

 real-time computing example, 97 - 99
 SQL interfaces, Shark as, 42 - 46
 Stanford GPS (Graph Processing

System), 137
 stateful operators, D-Streams,

 125 - 126
 stateless operators, D-Streams, 125
 stochastic gradient descent example

(GraphLab), 153 - 156 , 190 - 207
 Storm, 14, 93

 alternatives to, 122 - 123
 clusters, 96 - 97
 design patterns

 distributed remote procedure
calls (DRPCs), 102 - 106

 Trident, 106 - 107
 Internet traffic filtering example,

 121 - 122
 logistic regression (LR) in, 107 - 110
 manufacturing log classification

example, 116 - 121
 message processing guarantees,

 100 - 102
 PMML support for Naive Bayes,

 113 - 116
 real-time computing example, 97 - 99
 streams, 95

 grouping, 99 - 100
 support vector machine (SVM) in,

 110 - 113
 topology, 95 - 96
 uses for, 93 - 94

 Stratosphere, 133 - 134
 streams

 Spark streaming, 124 - 126
 in Storm, 95

 grouping, 99 - 100
 suitability

 of Hadoop, 3 - 9
 of Spark, 7

 supervised learning, ML (machine
learning) as, 65

 Surfer, 133
 SVM (support vector machine), 74 - 79

 complex decision planes, 74 - 76
 mathematics of, 76 - 78
 in Spark, 78 - 79
 in Storm, 110 - 113

 T
 Tachyon, 13
 targets in PMML, 85
 Tez, 165 - 166
 third-generation ML (machine

learning) tools, 12 - 16
 comparison with previous

generations, 16
 graph computations, 14 - 15
 iterative ML algorithms, 13 - 14
 real-time analytics, 14

 topology of Storm, 95 - 96
 transductive approach, inductive

approach versus, 65
 transformations

 in PMML, 82 - 84
 on Spark RDDs, 33

 Trident, 106 - 107
 Twister, 14 , 41 - 42

 U
 unsupervised learning, ML (machine

learning), 66

 V
 value mapping in PMML, 84
 vertex program in GraphLab, 149 - 153

216 INDEX

 Y-Z
 Yahoo, 30
 YARN, 161 - 162

 comparison with Mesos, 28
 frameworks for, 165 - 166
 motivation for developing, 162 - 163
 as resource scheduler, 163 - 165

Zookeeper, 96-97, 134

	Contents
	Foreword
	About the Author
	Chapter 1 Introduction: Why Look Beyond Hadoop Map-Reduce?
	Hadoop Suitability
	Big Data Analytics: Evolution of Machine Learning Realizations
	Closing Remarks
	References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [756.000 756.000]
>> setpagedevice

