标签 ‘ 一致性协议

解读Raft(三 安全性)

前言

之前的两篇文章更多的是在描述Raft算法的正常流程,没有过多的去讨论异常场景。

而实际在分布式系统中,我们更多的都是在应对网络不可用、机器故障等异常场景,所以本篇来讨论一下Raft协议的安全性,即在异常场景下是否会导致数据丢失、数据不一致等情况。

阅读全文

解读Raft(二 选举和日志复制)

Leader election

Raft采用心跳机制来触发Leader选举。Leader周期性的发送心跳(如果有正常的RPC的请求情况下可以不发心跳)包保持自己Leader的角色(避免集群中其他节点认为没有Leader而开始选举)。

Follower在收到Leader或者Candidate的RPC请求的情况下一直保持Follower状态。而当一段时间内(election timeout)没有收到请求则认为没有Leader节点而出发选举流程。

阅读全文

解读Raft协议(一 算法基础)

什么是RAFT

分布式系统除了提升整个体统的性能外还有一个重要特征就是提高系统的可靠性。

提供可靠性可以理解为系统中一台或多台的机器故障不会使系统不可用(或者丢失数据)。

保证系统可靠性的关键就是多副本(即数据需要有备份),一旦有多副本,那么久面临多副本之间的一致性问题。

一致性算法正是用于解决分布式环境下多副本之间数据一致性的问题的。

阅读全文

return top